
AD-A 2 3 9 465

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTICS% FLECTE !
AUG 19 1991 R A )

D D

THESIS
4l

A METHODOLOGY FOR PRODUCING AND TESTING A
GENESIL SILICON COMPILER DESIGNED

VLSI CHIP WHICH INCORPORATES
DESIGN FOR TESTABILITY

by

Brian L. Pooler

September 1990

Thesis Advisor: Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited

91 8 16 024 91-08090



UNCLASSIFIED
SFCLP 

T
v C SSr CATON 0. T. S AG;.

F rrr Approved

REPORT DOCUMENTATION PAGE T OMb No 0704 Of88
ia REPORT SEC.: TY C ASS FAG ON 1D RES'P ( . V-p '.('S

UNCLASSIFIED
2a SECURITY (LASS:FICAT ON AT-OP 3 D STRB,-,ON A, .'A AB - Il P-

Approved for public release;
2b DECLASSIFICATIONDOWNGRAD NG SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGAZAT O% REPORT ;".rB( PS;

6a NAME OF PERFORMiNG ORGAN!ZATtON 6b OFF CE SYMBOL 7a NAME OF T M P 7 ,% ORC A
1
. ?A

(if applicable)

Naval Postgraduate School AS Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7o ADDPESSCity State and ZIPCode)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF OjNYNG SPONSORNc Br Oc.(C S VBO_ 9 POCAE' ,S' jN1N DE NT CA ('% .

ORGANIZATON (If applicable)

8c ADDRESS (City State. and ZIP Code) 10 SOPlCE O; O.NDNG P0.

#'-OG P L PrO.EC' 46 % ,jP. %,T

LEVE', rO %O 0 :,CCESSON NO

11 TITLE (Include Security Classification) METHODOLOGY FOR PRODUCING AND TESTING A GENESIL SILI-
CON COMPILER DESIGNED VLSI CHIP WHICH INCORPORATES DESIGN FOR TESTABILITY

12 PEPSON._ A,,THOR'S

POOLER, Brian L.
13a TYE OF PFPO;T 3t, T.ME COVERED ,4 DATE OF REPORT (Year Month Day) 5 FACE C.

Master's Thesis FROMZ TO___ 1990 September 170
16 SjP0OE.MFN-APy NOTAT!ONThe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US Government.
"7 COSA I CODL> 18 S,,BjECT TERMS (Continue on reverse if necessar dno idenritj b blck number)

-PO . su -OuP Design for testability; VLSI; Genesil Silicon
Compiler; Automatic Test Generation; DAS 9100;
DV550

19 :5SPiA" Continue on reverse if necessary and identify by block numbe)Testability issues concerning the need

for including Design for Testability (DFT) techniques in VLSI designs are discussed.
Types of fault models, the use of fault simulation and the DFT techniques of Scan Path

and Built-in Test are described. An engineering methodology that uses the Genesil Sili-
con Compiler to produce a VLSI design, DFT CHIP, which utilizes the DFT Scan Path tech-
niqe is presented. Included are the procedures for using Genesil's simulation, timing
analysis and automatic test generation features. The steps taken to fabricate the
DFT CHIP design through MOSIS are discussed. The methodology used to test the fabricated
DFT CHIP design on the Tektronix DAS 9100 tester is described. Appendix A and Appendix

B provide copies of the Genesil check functions written for use during simulation on the
DFT CHIP design. Appendix C specifies the Genesil timing information for the DFT CHIP
design. Appendix D lists the conversion program which translates Genesil produced test
vector files to the file format used during testing on the Tektronix tester.

2oN P: ) A A :A' >0"' Ah3>'A(. [" Aq,>-A.7 ( (, ( A'. -CA r !.

EN A'S; ) .. V Z [] A', El El-c . I UNCLASSIFIED

LOOMIS, Herschel H. Jr. 408-646-3214 EC/Lm

DD Form 1473, JUN 86 i'rc' iou ,id, fonsarc cbsohi . - A .. ..

S,'/ 11 I.~! -Il 2-1, ,;,.; UNCLASSIFIED
i



Approved for public release; distribution is unlimited.

A Methodology for Producing and Testing a
Genesil Silicon Compiler Designed VLSI Chip Which

Incorporates Design for Testability

by

Brian Lee Pooler
Captain, United States Marine Corps

B.S.E.E., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

Author: ---- "
frian Lee Pooler

Approved by: H sce .' "q6s -'Thesis Advisor

yan Yang' Secod Reader

Michael A. Morgan, 4hairman,
Department of Electrical and Computer Engineering

ii



ABSTRACT

Testability issues concerning the need for including

Design for Testability (DFT) techniques in VLSI designs are

discussed. Types of fault models, the use of fault simulation

and the DFT techniques of Scan Path and Built-in Test are

described. An engineering methodology that uses the Genesil

Silicon Compiler to produce a VLSI design, DFTCHIP, which

utilizes the DFT Scan Path technique is presented. Included

are the procedures for using Genesil's simulation, timing

analysis and automatic test generation features. The steps

taken to fabricate the DFTCHIP design through MOSIS are

discussed. The methodology used to test the fabricated

DFTCHIP design on the Tektronix DAS 9100 tester is described.

Appendix A and Appendix B provide copies of the Genesil check

functions written for use during simulation on the DFTCHIP

design. Appendix C specifies the Genesil timing information

for the DFTCHIP design. Appendix D lists the conversion

program which translates Genesil produced test vector files to

the file format used during testing on the Tektronix tester.

..A c e s i D n F o r

NTIS CR'&' V
D C TAE

J ,s t'tic a "1o 1

By
D,. ib.

iii 
..."



TABLE OF CONTENTS

I. INTRODUCTION .......... ................... 1

A. BACKGROUND ......... .................. 1

1. Testability Issues ...... ............ 1

2. Fault Models ....... ............... 3

3. Fault Simulation ...... ............. 9

B. THESIS OVERVIEW ...... ................ 15

II. DESIGN FOR TESTABILITY TECHNIQUES ... ......... 17

A. BACKGROUND ....... .................. 17

B. COMPARISON OF THE SCAN PATH AND BUILT-IN TEST
TECHNIQUES ....... .................. 18

1. Scan Path ....... ................. 18

2. Built-in Test ...... ............... 23

3. Comparative Advantages and Disadvantages . 29

a. Scan Path Advantages ... ......... 29

b. Scan Path Disadvantages .. ........ .31

C. Built-in Test Advantages .. ....... 31

d. Built-in Test Disadvantages ....... .. 32

C. GENESIL IMPLEMENTATION OF THE SCAN PATH
TECHNIQUE ....... ................... 33

III. DESIGN FOR TESTABILITY IMPLEMENTATION METHODOLOGY . 40

A. FUNCTIONAL DESCRIPTION .... ............ 41

1. Input Registers ..... .............. 42

2. XNOR Register ...... ............... 45

3. Combiners/Testability Latches .. ....... .. 47

iv



4. Adder ........ ................... 51

5. Output ....... .................. 51

B. DESIGN CRITERIA, DECISIONS AND TECHNIQUES . . . 53

1. Design Decisions and Techniques to Minimize
Size ........ ................... 55

2. Additional Design Decisions and Techniques 65

C. SIMULATION AND TIMING ANALYSIS .. ........ 71

1. Simulation ...... ................ 71

2. Timing Analysis ..... .............. 79

D. AUTOMATIC TEST GENERATION AND FAULT COVERAGE 82

IV. FABRICATION AND TESTING .... ............. 100

A. FABRICATION METHODOLOGY ... ........... 100

B. TESTING METHODOLOGY .... ............. 106

1. Testing Methodology for the DFT_CHIP
Design ...... ................. 109

2. Test Results for the DFTCHIP Design 120

V. CONCLUSIONS ........ ................... 125

A. SUMMARY ........ ................... 125

B. RECOMMENDATIONS ...... ............... 128

APPENDIX A. BASIC CHECK FUNCTIONS ... ........... . 129

APPENDIX B. HIGH LEVEL CHECK FUNCTIONS .. ........ 136

APPENDIX C. TIMING ANALYSIS REPORTS ... .......... 143

APPENDIX D. TEST VECTOR CONVERSION PROGRAM . ...... 150

LIST OF REFERENCES ....... .................. 161

INITIAL DISTRIBUTION LIST ..... ............... 163

v



I. INTRODUCTION

A. BACKGROUND

1. Testability Issues

Testability of VLSI (Very Large Scale Integrated)

circuits deals with the issue of accomplishing measurements on

a circuit to insure that it performs in the manner in which it

was intended to perform. For a VLSI circuit to produce the

"proper" or expected outputs several factors must be looked

at. First, the circuit logic must be designed correctly to

produce the desired outputs for a given set of inputs.

Secondly, the chip must be physically fabricated properly so

as to correctly implement that logic for which it was de-

signed. Finally, the circuit should retain correct function-

ality over time by having stable operating characteristics.

If proper engineering techniques were used to formulate the

logic design for the circuits of a VLSI chip, the major

testability issue centers on the ability to completely

evaluate the physical functioning of circuits/gates internal

to the chip. Design for Testability (DFT) is an approach to

designing VLSI chips/circuits to better ensure that individual

internal components can be accessed for testing purposes.

With future improvements of VLSI technology, the

complexity (in terms of the number of components, gates, or

circuits) of VLSI chips will continue to increase. As this

1



complexity increases, the degree of difficulty experienced

during the testing of VLSI circuits will increase correspond-

ingly. "Conventional" testing relies on adding additional

mechanical means for testing such as extra input/output (I/O)

pins for more test points, improving test fixtures, using

additional testing probe points with a "bed of nails" etc.,

and suffers by being able to conduct testing only when the

part is removed from the system it operates in [Ref. l:p. 48].

In contrast, DFT relies on the addition of logic circuits

internal to the chip to help facilitate testing and circuit

accessibility, and DFT techniques can be used to design

systems which allow in-system testing of parts [Ref. l:p. 81].

Conventional testing methods have become inadequate

primarily due to their inability to access internal circuit

components and their need to feed signals through a test

interface involving many I/O pins [Ref. l:p. 57]. As VLSI

chips become more dense they require extra pins for normal I/O

operations thus leaving fewer pins which can be used for

testing purposes. Also, with the increased miniaturization of

VLSI chip circuitry, the number of pads available to connect

to I/O pins has not kept pace with increases in the number of

transistors within a chip [Ref. l:p. 59]. When chip periphery

lengths grow by &l the area available for transistors grows by

(Al) 2 but the space available for pads grows by only 4A1. If

this transistor growth requires more I/O pins and pad growth

can not keep up, the pins available for testing will decrease.

2



The need for considering the inclusion of DFT tech-

niques during chip design can be predicated largely on one

factor: cost [Ref. 2:p. 100]. The need to insure reliability

in a chip is self-evident and only testing can help insure

reliability. If the cost of testing a complex VLSI chip is

too great, an otherwise desirable logic design might not be

produced. Although VLSI per circuit fabrication costs have

been decreasing, the per circuit testing costs have increased

as a percentage of the total chip cost as chips have become

more complex [Ref. l:p. 15]. Additionally, the costs associ-

ated with a user finding/using defective chips mandates that

adequate testing be done prior to chips being distributed for

use. To both lower the costs of performing testing and to

allow a degree of testing in otherwise conventional testing

prohibitive circuits, the inclusion of DFT criteria has

emerged as a growing requirement in VLSI design.

2. Fault Models

The goal of DFT is to find ways to make testing

easier, less costly, and more efficient to implement. By

adding additional circuitry to the chip, DFT adds to the

observability and controllability of the system. Controlia-

bility can be defined as the degree to which a node internal

to a circuit can be set to a given logic level [Ref 3:p. 97].

In contrast, observability refers to the ability to observe

the logic level of a given internal node via an output from

the design [Ref. 3:p. 97]. The degree to which a chip can be

3



tested is highly dependant upon its degree of controllability

and observability. By increasing the controllability and

observability of a circuit, the testability, in terms of

finding out if the circuit is "fault free", is increased.

A circuit is said to contain faults if it exhibits

failures which cause deviations from the specified performance

behavior [Ref 4:p. 1]. Two major classes of faults are design

fauLts which manifest themselves as improper connections

within the VLSI circuit and physical circuit defect faults

such as those caused by manufacturing problems or wear out

during chip operation [Ref. 4:p. 1]. Physical defects include

open contacts, broken lines, faulty transistors, and shorts

between parts of the circuit [Ref. 4:p. 1]. Photolithography

errors during the manufacturing of VLSI circuits, such as

alignment problems, mask failures, or unintended or missing

connections, are major contributors to these physical defects

[Ref. 5:p. 693]. Wear out failures can occur due to such

things as metal starting to corrode or metal migration due to

the presence of high current densities [Ref. 5:p. 695]. Fault

models are used as a means for describing what the effects are

of a particular type of circuit physical failure.

Fault models can include modeling faults down to

physical defects at the individual transistor/switch level,

but often fault models only consider faults down to the logic

gate level. The advantage to using a logic gate level fault

model is that this type of model can represent faults for many

4



different technologies. The stuck-at fault model is this type

of logic gate level model and as such is the lowest level of

modeling that is technology independent.[Ref. 6:p. 40]

The stuck-at fault model is based on assuming that

physical defects causing faults will result in input or output

lines of logic gates being permanently stuck-at logic level 0

or 1. As an example of how a stuck-at fault could be mani-

fested in a CMOS circuit consider the inverter of Figure 1.1.

If the line at point A is inadvertently shorted to ground then

the output of the inverter will be stuck-at 1 (S-A-i) no

matter what the input to the inverter is. If the line at

point B is inadvertently broken then the circuit will produce

the correct logic level 1 output when a logic level 0 is the

input and the p-type transistor conducts. However, if a logic

level 1 is the next input after a logic level 0 input the

n-type transistor is not turned on because of the broken line.

Instead, the output will remain at logic level 1 for a period

of time which depends on leakage currents. If the inverter is

included in a circuit which receives a high speed stream of

inputs consisting of both logic level l's and O's then the

time for the leakage current dissipation may be longer than

the time between input- of logic level l's. If so, the output

will appear as a permanent S-A-1 fault.[Ref 7:pp. 7, 8]

To illustrate how to test for stuck-at faults, the AND

gate of Figure 1.2 is considered. If this gate has a S-A-i

fault at the gate's A input as shown, the gate will always

5



Vdd

A
input output

Figure 1.1 CMOS Inverter Stuck-at Faults After Ref. 7.

S-A-I

SUsing inputs of A=O and B=1 will

check for a S-A-I fault at input A

A

AND

B

Figure 1.2 AND Gate Stuck-at Fault Testing

6



perceive line A to be at logic level 1, even if a logic level

0 is actually applied. To test for this S-A-1 fault for line

A, note that the A,B input line pairs (0,0), (1,0), and (1,1)

will all produce correct outputs on line C. Therefore, these

inputs can not produce a result which indicates the presence

of the S-A-1 fault. However, if input (0,1) is used the

output should be logic level 0 but will instead be logic

level 1 due to the S-A-1 fault at input A. Thus, the input

pattern (0,1) is a test for a line A S-A-1 fault.

Each logic gate having a total combination of n

input/output lines has a possibility of 2n different single

(one at a time) stuck-at faults (i.e., each input or output

line can exhibit either a S-A-1 or a S-A-0 fault). One

problem in testing is to design test vector inputs which can

detect these 2n stuck-at faults. The AND gate of Figure 1.3

shows that certain input patterns can determine the presence

of more than one stuck-at fault. As an example, an A to D

input line pattern of (1,0,1,1) which produces an output of

logic level 1 means that either input line B is S-A-1 or

output line E is S-A-1. As shown in Figure 1.3, only five

test vectors are needed to completely test the proper func-

tioning of this gate. Note that a test vector which produces

an erroneous result will not be able to specify which stuck-at

fault exists since each test vector covers more than one

stuck-at fault case. Instead, the results from the applica-

tion of the test vector will only indicate that the gate has

7



A

B AND E
C
D

Input Faults Pattern to Detect Fault
ABCD

A S-A-0 1 1 1 1
A S-A-1 0 1 1 1
B S-A-0 1 1 1 1
B S-A-I 1 0 1 1
C S-A-0 1 1 1 1
C S-A-1 1 1 0 1
D S-A-0 I I 1 1
D S-A-I 1 1 1 0

Output Faults Pattern to Detect Fault
ABCD

E S-A-0 1111
E S-A-i any input combination

that contains one or
more 0 inputs

Patterns Needed to
Completely Test Gate

ABCD
1 1 1 1
0111
1011
1101
1110

Figure 1.3 Test Vectors Needed for Stuck-at Fault Detection

8



a fault in it. However, this information alone is often all

that is sought since then the VLSI circuit is known to be bad.

Although basically technology independent and widely

used, the stuck-at fault model does have several problems.

Among these are:

1. Only a single stuck-at fault is assumed to be present at
a time in the VLSI circuit for this model type. Since
more than one stuck-at fault could actually be present
in a circuit, the stuck-at fault model does not accu-
rately represent the true range of conditions possible
[Ref. 8:p. 97].

2. The stuck-at fault model does not take into account high
speed "AC" or "dynamic" type faults [Ref. l:p. 403].

3. Certain types of faults such as bridging faults, involv-
ing shorts between lines, and floating-gate type faults
can not be completely handled by the stuck-at fault
model [Ref. l:p. 404].

To overcome these problems other models such as the bridging

fault model (a gate level model), and the stuck-open and

stuck-on fault models (both transistor level models) can be

used [Ref. 4:pp. 10, 11]. Today however, the single stuck-at

fault model is still the model which is used most widely for

testability and fault simulation purposes [Ref 3:p. 95]. The

work done for this thesis is based on using a single stuck-at

fault model.

3. Fault Simulation

In order to test a VLSI circuit a set of test vectors

must be applied to the circuit and then the output results

must be compared to the desired results (normally obtained

from logic simulation). The purpose of fault simulation is to

determine, for a specific set of test vectors, which faults in

9



the circuit are detected. Fault simulation normally involves

a fault simulator introducing single stuck-at faults, one at

a time, into gate level models of the circuit [Ref. 6:p. 37].

By then applying the test vectors to the simulated circuit,

the fault simulator determines if the fault was or was not

tested/detected. The result of fault simulation is a determi-

nation of the percentage of faults that were tested/detected

with a given set of test vectors out of the total number of

faults introduced by the fault simulator. Just because a

fault is not detected does not mean that it is untestable;

rather it just means that the given set of test vectors used

could not detect it [Ref. 8:p. 97]. Fault coverage is the

total number of faults, expressed as a percentage, that can be

detected for a given set of test vectors as compared to the

total number of all possible faults [Ref. l:p. 335].

It is important to make a distinction between the two

reasons and types of testing that is performed on a chip.

Functional testing is used to validate the operational

characteristics of a chip. Functional test vectors are

applied to the chip and the outputs are observed to determine

if they provide the results desired for a given input or

sequence of inputs. In contrast, a set of test vectors which

achieve maximum fault coverage is applied to a chip to

determine if faults arising from the fabrication process are

present. Therefore, the maximum fault coverage test vector

set is not intended to check for proper design functionality

10



of the chip, but rather to check for manufacturing errors

which result in faults that would preclude the chip from

performing in its intended manner. Although technically

possible, a set of maximum coverage test vectors is not

normally used to check chip functionality because of the

extreme complexity of determining the "proper" outputs (in

terms of functionality) for the sequence of inputs that

provides maximum fault coverage.

The question most frequently asked when performing

testing is often "How much testing is enough?" A correlation

has been found between fault coverage and average quality

level (AQL), where AQL is a measurement of the percentage of

defective parts found by users. Fault coverage must be very

high to obtain an acceptably low AQL. A fault coverage of 50

to 70 percent produces approximately a five percent AQL, 90

percent fault coverage a three percent AQL, and it takes up to

99 percent fault coverage to get a 0.1 percent AQL. For an

applicatior specific integrated circuit (ASIC) 99.9 to 99.99

percent fault coverage is considered mandatory by many experts

today.[Ref. 6:p. 37]

Of concern to a manufacturer of VLSI circuits is the

defect level which is present for a given yield and percentage

of fault coverage on a chip. A derivation, using the following

steps as found in Ref. 8, produces an equation for the defect

level in terms of these parameters:

11



1. Use the stuck-at fault model and assume all stuck-at
faults are independent from each other.

2. Let Pn.be the probability of a single stuck-at fault
occurring on a chip which has n such possible faults.
Let yield (Y) equal the probability of a good chip.
Then since each fault is independent

y = (l-Pn) n .(i

3. Let A represent the case where the chip has no stuck-at
faults on it. Let B represent the case where it is
determined that no stuck-at faults are present in any of
m sites that have been tested. Then the probability
of B found from testing m out of n total possible faults
is

P(B) = (l-Pn)m. (1.2)

4. The probability of A (probability of a good chip) given
that B occurred (m of the sites were tested without
finding a fault) is

P(A1B) - P(AnB) (1.3)
P(B)

5. Now P(AnB) is P(A) = no faults on the chip and P(B) = no
faults at m sites on the chip. If there are no faults
on the chip there are also no faults at any set of m
sites on the chip. Therefore,

P(AnB) = P(A) = (l-Pn)n. (1.4)

6. Let DL = defect level = probability that a defective
chip is manufactured and sent to a user. DL = 1 minus
the probability that a good chip is sent. Therefore,

DL I -P(AIB) 1 P(ANB) llPnn 115P(AB)
DL= - (AI )= - P(B) = - (i-Pn)~ m  (15

7. Substituting equation (1.1) into equation (1.5) gives

( n-) (I - 2) (1 .6 )
DL = 1-Y n 1-y n.

8. Let T = fault coverage. Note that T = m/n (i.e.,
testing m of n possible stuck-at faults). Then the
defect level can be expressed as

DL - Iy( I -T) .  (1.7)

12



The graphical consequences of equation (1.7) can be seen in

Figure 1.4. Note that even for high yields a very high fault

coverage percentage is needed to get an acceptably low defect

level. In a study conducted by Motorola, Published in IEEE

DesiQn and Test (April, 1985), using an actual manufacturing

line with 50 percent yield, a fault coverage of 97 percent

still produced a one percent defect level [Ref. 6:p. 40].

Figure 1.4 shows how equation (1.7) produces results which

closely follow those obtained from this study even with the

assumptions made about only independent stuck-at type faults

being present on the chip.

The obstacle to using the fault simulation process is

the time it takes to run a simulation evolution. Fault

simulation time tends to rise exponentially as circuits become

more complex [Ref. 9:p. 59]. This can lead to the inability

to perform fault simulation, due to time constraints alone, on

complex chips. Parallel or concurrent simulation algorithms

which allow more that a single stuck-at fault to be examined

during a given time period are alternative methods which can

accelerate the simulation process [Ref. 6:p. 41]. Another

method is via statistical fault grading which attempts to

extrapolate the information gathered from a limited number of

test vectors to predict overall fault coverage by factoring in

information of controllability and observability. Although

obviously not as accurate as complete fault simulation,

statistical fault grading appears to be able to come within a

13



100

70

0

E)

4)

30

20

10

0=9

0 20 40 60 80 100

Fault Coverage(%

Figure 1.4 Defect Level versus Fault Coverage

14



few percent of the accuracy obtainable using complete fault

simulation [Ref. 9:p. 59].

B. THESIS OVERVIEW

The primary goals of this thesis are twofold: first, to

investigate the incorporation of DFT on a VLSI chip implement-

ed on the Genesil Silicon Compiler; second, to use Genesil to

design a chip with DFT features, have it fabricated, and

physically test the chip. Through examination of the steps

taken in working with an actual chip, this thesis will

concentrate on the methodology for both incorporating DFT

techniques into Genesil designs and for testing a fabricated

Genesil implemented chip on a commercially available tester.

Chapter II will describe the DFT techniques of Scan Path and

Built-in Test. It will provide a comparison of the relative

advantages and disadvantages of both these techniques.

Finally, it will discuss the manner in which Genesil imple-

ments the Scan Path technique chosen for use on the chip which

was fabricated was fabricated. Chapter III is concerned with

the methodology process used during the design, simulation

testing, test vector fault grading and automatic test vector

generation for a 16-bit correlator chip produced using the

Genesil Silicon Compiler. It will also include a complete

functional description of this chip. Chapter IV provides

information pertaining to the process of getting the chip

fabricated via MOSIS and examines the methodology used and

results obtained during testing conducted on the fabricated

15



chip. Chapter V provides a summary of and draws conclusions

from the research done during the course of this thesis. The

appendices provide copies of the programs and functions

written to perform simulation on the correlator chip, informa-

tion obtained about timing characteristics of the chip, and a

copy of the program written to convert test vectors from the

format provided by Genesil to that needed by the commercial

chip tester.

16



II. DESIGN FOR TESTABILITY TECHNIQUES

A. BACKGROUND

The need for a high degree of fault coverage to insure a

quality product has made it necessary to consider DFT issues

while developing new VLSI designs. If internal circuit nodes

cannot be initialized to needed test vector values (an issue

of controllability) and/or the results of the tests cannot be

seen (an observability issue) then the fault coverage possible

will not be as high as is considered desirable. Only by

including DFT circuit logic in a chip can observability and

controllability be increased enough to raise fault coverage to

acceptable levels for complex VLSI chips.

Two major techniques have evolved for incorporating DFT

into chip design. The first is the scan path technique which

involves the serial introduction of externally generated test

vectors into specific internal nodes of a chip to enhance

controllability and the serial extraction of internal node

values from the chip to enhance observability. Built-in Test

or Self-test is the second technique. This technique uses

additional circuitry on a chip to produce test vector patterns

internally and may include circuitry to simplify the andlysis

of the test results. These two techniques can be used

independently or both can be included in a single chip design.

17



Complementary Metal Oxide Silicon (CMOS) chips designed

using Genesil may include either or both of these techniques.

Genesil provides a Testability Latch Block which may be

included in a chip design for the major purpose of increasing

controllability and observability. For parallel datapath

designs three configurations of the Testability Latch Block

are available:

1. The basic configuration which uses a single shift
register to serially enter or retrieve data.

2. The generator configuration which has the attributes of
the basic configuration as aell as including circuitry
for pseudorandom test sequence generation.

3. The signature configuration which has the attributes of
the generator configuration plus signature analysis
logic circuitry.

The first configuration is used during implementation of the

scan path technique while the latter two configurations make

use of Linear Feedback Shift Registers to help implement the

Built-in Test technique.[Ref. 10:p. 24-2]

B. COMPARISON OF THE SCAN PATH AND BUILT-IN TEST TECHNIQUES

1. Scan Path

The scan path technique is a conceptually easy

approach to including DFT into a chip design. Scan path

designs create a situation whereby access may be gained to the

internal circuitry of a VLSI chip using a minimal number of

chip pins devoted to testing. This technique enhances the

observability and controllability of internal nodes which

would otherwise be inaccessible from the periphery of the

18



chip. The scan path technique accomplishes this by partition-

ing a design into smaller subsystems which can then be tested

to a higher degree and in an easier manner than the original

system as a whole. A scan path is nothing more than a serial

channel through which data can be shifted to reach flip-flops

which provide a desired initialization state to specific

internal nodes of the chip. Through the shifting process,

specific values can be latched into the internal nodes prior

to the start of a test ("scanned input") and the results can

be shifted out after the completion of a test ("scanned

output") [Ref. l:p. 103]. Figure 2.1 illustrates the manner

in which a generic circuit might be broken into smaller

subsystems via use of the scan path technique. Thus, scan

path solves the controllability problem via its ability to

shift in data to internal nodes and solves the observability

problem through its ability to access the results of tests by

shifting them out of the chip.

The scan path technique is often used in connection

with the flip-flops that already exist in a VLSI design due to

the presence of sequential circuitry. This involves connect-

ing the flip-flops which provide "memory" to the sequential

circuit together in a controllable serial shift register type

fashion. Then by using "switches" controlled by test signals,

the flip-flops can be changed from the "normal" sequential

circuit mode to a "shift register mode" in which the flip-

flops form a shift register through which specific test

19



IL-

LL LL

(0 LL <

20 0



vectors can be introduced into particular locations of the

circuit [Ref. l:p. 108]. This makes possible the testing of

the circuit. Figure 2.2 illustrates the process of introduc-

ing a scan path into a sequential circuit.

There are several individual and slightly different

approaches which make use of the scan path idea. The actual

Scan Path method chains together master-slave D type flip-

flops to make the needed shift registers. These D type flip-

flip-flops consist of two latches controlled by a single clock

signal. The clock signal for the first latch goes through an

inverter to become the clock signal for the second latch. The

disadvantage to this approach is that if the input to the D

flip-flop changes at nearly the same time that the clock does

or if the output of the teeorcr, ltch feeds back through

combinational logic to uecome the input of the first latch

then a race condition coul- exit.rRef. 2:p. 105]

To overcome this potential race problem an approach

called Level Sensitive Scan Design (LSSD) was developed. It

utilizes the same basic idea as Scan Path for moving ttst

vectors into and out of the circuit but uses two separate

clocks, each controlling a separate latch from a two latch

pair. By using two separate clocks to control a latch pair

element of the shift register, the LSSD technique overcomes

the potential race problem present for the Scan Path tech-

nique. [Ref. 2:p. 105]

21



INPUTS OUTPUTS

COMBINATIONAL
LOGIC

SCAN IN

FSWITCH CONTROL

-SCANRYT

FuIP-FSPS in a S
0220

SCAN OUT

Fiure 2.2 Using a Scan Path in a Sequential Circuit

22



Finally, a related method which has been developed is

the Scan Set method. This technique varies from straight scan

path methods in that although it uses shift registers, they

are not located in the data path. Instead, the shift regis-

ters are placed adjacent to the circuit's own sequential

circuit latches. There are two advantages to this method.

First, a designer can determine exactly which of the sequen-

tial circuit latches he desires to have the ability to set if

the ability to set all latch points is not needed or desired.

Secondly, Scan Set sampling can occur during the sequential

circuit clocking period thus providing a snap shot of the

sequential circuit during operation.[Ref. 2:p. 106]

2. Built-in Test

The Built-in Test (BIT) technique is inherently more

complex than the scan path technique. BIT involves a tradeoff

of additional chip circuitry above that used in the scan patt

technique against the ability to internally generate test

vector patterns and compact test result responses. This

facilitates the testing procedure by moving a portion of the

test process from off to on chip. The scan path technique

needs to scan-in a test vector and or scan-out a test result

for each test cycle. In contrast. BIT reduces the need to

scan-in a new test vector for each test cycle since it

internally generates its own test vector patterns after an

initialization process. Additionally, BIT can reduce the need

to scan-out test results each test cycle by encoding the

23



results in a more compact form which need be looked at only

after the completion of a large number of test cycles. The

combination of these two effects results in BIT allowing

multiple test cycles to proceed at full system speed with only

the overhead of single initialization and final result

gathering phases to slow it down.[Ref. l:pp. 169, 170]

The use of a structure called a Linear Feedback Shift

Register (LFSR) is the main method which has been developed to

provide internally generated test vector patterns. The

patterns which are produced are normally deemed to be pseudo-

random in nature since they follow no apparent order from

pattern to pattern and meet some basic statistical tests for

randomness. In reality they are not random, thus the designa-

tion pseudo, but rather follow a predetermined sequential

order which depends both upon the implementation configuration

of the LFSR and upon the initialization values place in the

flip-flops of the LFSR.[Ref. l:p. 172]

The basic structure of a LFSR as implemented by

Genesil is shown in Figure 2.3. It consists of an n-stage

shift register with each stage position serving as a latching

mechanism for a single bit. The multiplexer control line R

determines whether the input for the bit zero stage position

comes from the feedback loop or from the serial input line

TIN. Initialization is provided to the LFSR by serially

loading a desired value into each shift regioter bit stage

position. Once initialization is complete the control line R

24



TOUT

Stage n- 1i
(MSB)

0 01

bit 2 XOR

bit 1

Stage 0 bit 0 XOR
(LSB) 7 0

R MUX

TIN

Figure 2.3 Linear Feedback Shift Register After Ref. 10

25



can be set so that the bit zero stage position accepts values

only from the feedback path. The changing contents of the

LFSR bit stage positions will produce a pseudorandom sequence

determined by the specific locations where exclusive-or (XOR)

gates are found in the feedback path. By taking the output

from each bit stage position and forwarding it to other

circuit logic on the chip a sequence of internally generated

test vector patterns is produced by the LFSR.

The locations where XOR gates are present in the

feedback path is dependant on a constant called the LFSR

polynomial which determines the number of terms between

repetitions in the pseudorandom sequence [Ref. 7:p. 66]. It

is desirable to have both the number of terms produced by the

pseudorandom sequence generator be of maximum length and to

utilize a minimum number of XOR gates in the feedback path.

A maximum length sequence generator from an n-stage LFSR can

produce 2n-l different sequence terms [Ref. l:p. 175].

Reference 8 provides a detailed discussion on the development

of LFSR polynomials which minimize the number of XOR gates

needed to achieve a maximum length generator sequence for a

given size n-stage LFSR.

A modified LFSR structure may be used to form a signature

analysis register as shown in Figure 2.4. The signature

analysis register is formed by adding an additional XOR gate

as the last item in the feedback path to perform an XOR

operation on the feedback path value and an incoming data bit

26



TOUT

Stage n-1
(MSB) bit n-1

W0

bit 2 XOR

bit 1

Stage 0 bit
"

(LSB) bit 0 XOR

] [ Incoming

Data Bit

TIN

Figure 2.4 Signature Analysis Register

27



value [Ref. 8:p. 143]. Therefore, the pattern present in the

signature analysis register is dependant on the initialization

vector loaded serially into the shift register, the XOR gate

structure of the feedback path, and the data sequence occur-

ring for the incoming data bit. If the signal analysis

register is initialized with a known value and the incoming

data sequence is also known then the pattern which should be

present in the shift register portion of the signal analysis

register after a specific number of clock cycles can be

determined through simulation.

Placing a signature analysis register on an output

line of a circuit being tested allows the output test sequence

results for a large number of consecutive tests to be compact-

ed to a shorter cumulative sequence. Thus, the signature

analysis register serves to encode the test result sequence.

The encoded, cumulative results can be shifted out to compare

against simulated results obtained by using the output data

sequence from a properly functioning circuit. If the results

vary between the two cases then a fault in the circuit has

been detected.[Ref. l:p. 177]

Built-in Logic Block Observation (BILBO) is a BIT

method which is similar to the signature analysis approach.

The BILBO structure differs from a signature analysis register

mainly in that it has available additional XOR gates placed

before each bit position to allow a total of n incoming test

data bits to influence the encoded BILBO register value

28



[Ref. 8:p. 144]. Therefore, BILBO is well suited for compact-

ing test results obtained from multiple internal nodes in a

chip.

A general strategy for utilizing BILBO is shown in

Figure 2.5 and Figure 2.6. Figure 2.5 shows the configuration

used to test the first combinational logic block. Figure 2.6

shows the shifted configuration used to test the second

combinational logic block. BILBO registers are ideal for this

setup since if their test data bit input lines are held

constant they can function as a LFSR test pattern generator

and otherwise they can function as a test result compactor.

By shifting the function performed by the two BILBO registers

both sets of combinational logic can be adequately tested.

(Ref. 2:p. 107]

3. Comparative Advantages and Disadvantages

a. Scan Path Advantages

The primary advantage in using the scan path

technique is that it increases both the controllability and

observability of otherwise inaccessible internal nodes. In

doing so it raises the obtainable fault coverage level

possible for a chip. Using a scan path makes possible the

introduction of a minimal number of specifically designed test

vectors to maximize the fault coverage [Ref. ll:p. 379].

Using these customized test vectors may in some circumstances

reduce the total number of test vectors, as compared to the

29



Psuedorandom Signature
Number Analysis

Generator Register

Figure 2.5 Configuration to Test Combinational
Logic Block One After Ref. 2

B Combina- B Combina-

I tional I tional

L ._ Logic L Logici

~B _J Block -J",B Block --

0 One '1- Two "

Signature Psuedorandom
Analysis Number
Register Generator

Figure 2.6 Configuration to Test Combinational
Logic Block Two After Ref. 2

30



BIT technique, that need to be scanned in to achieve a desired

fault coverage level [Ref. 7:p. 93].

b. scan Path Disadvantages

The disadvantages of the scan path technique are

related to both external test gear complexity and cost and to

the time needed to perform adequate testing. Since all test

vector inputs and test result outputs are generated or

examined external to the chip, a complex, costly test gear

setup is normally needed [Ref. 7:p. 94]. This test gear must

be able to both generate and apply the customized test vectors

required and then analyze the test results for each test

vector input used. Thus, the test gear must work with a much

larger volume of data than if the BIT technique is used.

The need to both load each test vector input and

extract each test result output in a serial manner can involve

a significant overhead of time. Desired testing may take a

significantly large number of clock cycles and the testing

time overhead will increase with the length of the scan path

used. Also, the time overhead involved to utilize a multiple

number of test vector patterns is much greater than if BIT,

which needs only a single shift-in and shift-out of data for

a set of multiple test vector patterns, is used.

c. Built-in Test Advantages

A main advantage of the BIT technique is that it

allows a portion of the test functions to be moved from off to

on chip. This may make the use of simplified external testing

31



processes or test gear possible. By generating test vector

patterns and compacting test results internally, BIT can

greatly reduce the volume of data which needs to be shifted in

or out of the chip [Ref. 2:p. 108]. Finally, by combining

this lowered overhead with an ability to generate and apply

the internally generated test vector patterns at the rated

speed of the chip BIT can greatly reduce the total time spent

in applying a specific number of test vector patterns to the

chip [Ref. ll:p. 379].

d. Built-in Test Disadvantages

One potential disadvantage of using BIT is

encountered when either signature or BILBO registers are used

to accomplish test result compaction. This problem is termed

aliasing. Aliasing refers to the situation where the encoded

result produced in the signature analysis or BILBO register

for a faulty circuit is the same as that produced for a fault

free circuit. This occurs when the test data streams for a

faulty circuit and fault free both compact to the identical

encoded result. The probability of aliasing occurring is a

function of the number of bits compacted from the test data

stream versus the number of stages in the register. This

probability will rise if either the number of bits to be

compacted is increased or if the number of stages in the

register is decreased.[Ref. 8:p. 106]

A second major disadvantage for BIT centers on the

test vector patterns which can be generated by a LFSR network.

32



Although a LFSR maximum length sequence generator can produce

a nearly exhaustive, 2n-1 set of test patterns for an n-stage

LFSR, the sequence order of the test patterns produced may be

nonoptimal for achieving a maximum level of fault coverage

[Ref. ll:p. 379]. It is possible that there may be no

initialization pattern which can be applied to the LFSR to

produce a properly sequenced set of test patterns to maximize

the fault coverage.

A final disadvantage is that BIT requires addi-

tional circuit logic above that needed for the scan path

technique. A multiplexer is needed to control the flow of

data into the shift register chain and XOR gates are needed

both in the feedback path and for the any entry points of test

result data which is going to be compacted. The cost of this

additional circuit overhead can be looked at in terms of the

ratio of circuitry needed for testing to that of the circuitry

needed for performance of the chip's required functions.

C. GENESIL IMPLEMENTATION OF THE SCAN PATH TECHNIQUE

The device used during this thesis to investigate the

incorporation of DFT into chip design is a 16-bit correlator.

It was chosen because it involves an easily understood

functional design which can readily incorporate DFT. Addi-

tionally, this design was chosen because consideration of DFT

issues for it had already been looked at in previous thesis

work by Davidson [Ref. 7]. The goal established for the chip

design which was fabricated was to incorporate that DFT

33



technique which would maximize fault coverage for a minimum

number of applied test vector patterns. Based on the results

and conclusions in Reference 7 about this correlator design,

the scan path technique was chosen as the method to use to

accomplish the chip design goal.

Implementation of the scan path technique for a Genesil

produced design is accomplished by including Genesil Testabil-

ity Latch Blocks. These blocks consist of a set of serially

connected, individual testability latches. Each testability

latch operates on a single bit of data. By stringing the

testability latches together serially a scan path shift

register channel is produced. The Testability Latch Blocks

have the ability to perform five different operations:

1. During normal (nontest) operation of the chip they serve
as data storage latches.

2. The shift operation provides the ability to serially
load or extract a test vector via the scan path. Each
shift operation moves the scan path shift register data
one bit further along the scan path in the direction
towards the scan path output.

3. The force operation is used together with the scan-in
process. It provides the ability to take a test vector
which was serially loaded into the scan path shift
register and force a parallel load of its values into
the data storage latches.

3. The sample operation is used together with the scan-out
process. It causes the values in the data storage
latches to be loaded in parallel into the shift regis-
ter. Values can then be serial shifted out of the chip.

4. The swap operation makes possible coupled force and
sample operations. The result is that sampled data can
be removed from the data storage latches and shifted out
at the same time that a new test vectors is shifted in.

34



Through these five operations Testability Latch Blocks are

able to enhance controllability and observability within a

chip design.[Ref. 12:p. 15-2]

The circuit configuration of a single testability latch is

shown in Figure 2.7. Five control gates and three D type

transparent latches are used in the testability latch circuit.

The control gate signals LOAD, A, B, F and S both enable the

gates so as to route data between the latches and provide the

signals which cause the latches to be loaded. Latch D serves

as the data storage node and is loaded when either the LOAD or

F signal goes high. Latches Sl and S2 form the shift regis-

ter. Latch Sl is loaded when either the A or S signal goes

high. Latch S2 is loaded when the B signal goes high. To

form a complete scan path the TOUT signal from each testabili-

ty latch is connected to the TIN signal of the testability

latch for the next-most-significant bit. Only the TIN signal

for the least-significant bit (LSB) and the TOUT signal for

the most-significant bit (MSB) cf the scan path need to be

connected to external pins on the chip. [Ref 12:pp. 15-3, 15-41

The functions performed by the testability latches are

based on the control gate signal sequences introduced to the

circuit. To load the data storage latch with the value

present on the DIN signal line the LOAD signal must be raised

high. The latched data value then becomes available on the

DOUT signal line. To shift data upwards one significant bit

in the scan path shift register the control A and B signals

35



TOUT

~LATCH

S2

B

DIN LATCH DOUT

LOAD

LATCH
S1

S ±A

TIN

Figure 2.7 Testability Latch Circuit Configuration
After Ref. 12

36



must be sequentially strobed. To force data to be copied from

the scan path shift register to the data storage latch the

control F signal must be strobed. To sample or copy data from

the data storage latch to the shift register the control S and

B signals must be sequentially strobed. To swap or exchange

data between the shift register and the data storage latch the

control S, F, and B signals must all be sequentially strobed.

[Ref. 12:p. 15-5]

In Genesil, using random logic blocks, there are three

configurations of basic testability latches available. Their

differences are based on the methods used to provide clock and

control signals to the testability latches. These three

configurations are:

1. The TLATCHU configuration. This configuration uses
unclocked A, B, F and S control signals which function
independently of any clock signals found on the chip. It
requires that externally generated control strobes be
used to drive the A, B, F and S control signal lines
directly. Typically these control strobes originate
from off chip. The chip designer must ensure that the
timing sequence requirements for the control signals are
met to perform the desired operations. Table I speci-
fies the different operation modes of the TLATCHU
configuration.[Ref. 12:p. 15-6]

2. The TLATCHG configuration. It makes use of the phase_a
and phaseb clock signals derived from the two-phase
global system clock to implement timing relationships
used in producing properly timed control sequence orders
for the A, B, F and S control signals. Input control
signals named Ml and M2 are used to encode the operation
which is desired for the testability latch. These
signals are latched with additional circuitry and are
then decoded to produce the correct A, B, F and S
signals. Therefore, only the Ml, M2 and LOAD signals
need to be generated external to the testability latches
(normally from off chip). Table II defines the encoding
for and operation modes of the TLATCHG configuration.
[Ref. 12:pp. 15-14, 15-15]

37



TABLE I
TLATCHU CONFIGURATION OPERATION

Required Inputs Operation

A B F S Mode

0 0 0 0 NORMAL

1 0 0 0 SHIFT*
0 1 0 0

0 0 1 0 FORCE

0 0 0 1 SAMPLE*0 1 0 0

0 0 0 1
0 0 1 0 SWAP*
0 1 0 0

*Mode requires a sequence of non-overlapping

strobes in the order shown.

TABLE II
TLATCHG CONFIGURATION OPERATION

Encoded Decoded Outputs Relative
Inputs Operation to Clock Phases
Ml M2 Mode phasea phase_b

0 0 SHIFT A B

1 0 FORCE"I' F B

0 1 SAMPLE S B

1 1 SWAP(2)  S

(1 LOAD signal disabled during phase a of FORCE cycles.

(2)SWAP must be followed immediately by a FORCE cycle to

to override Latch D and advance the Latch D contents
into Latch S2.

38



3. The TLATCHL configuration. It is similar to the TLATCHG
configuration except that it uses its own local clock
vice the global system clock to produce timing informa-
tion. Use of this local clock allows this configuration
to perform operations independently of the status of the
global system clock. The clock signals phaseta and
phase_tb are derived from this local clock and provide
properly timed control sequence orders for the A, B, F,
and S control signals. Normally the local clock signal
originates as an additional external input to the chip.
The M1 and M2 control signals perform in the same manner
as they do for the TLATCHG configuration. Table III
defines the encoding for and operation modes of the
TLATCHL configuration. [Ref. 12:pp. 15-10, 15-11]

As is discussed in Chapter 3, the TLATCHL configuration was

chosen as the means of incorporating a scan path into the

16-bit correlator chip which was fabricated.

TABLE III
TLATCHL CONFIGURATION OPERATION

Encoded Decoded Outputs Relative
Inputs Operation to Clock Phases
M1 M2 Mode phase ta phasetb

0 0 SHIFT A B

1 0 FORCE ( ' )  F B

0 1 SAMPLE S B

1 1 SWAP(2 )  S -

(1) LOAD signal disabled during phaseta of FORCE cycles.

(2) SWAP must be followed immediately by a FORCE cycle to

to override Latch D and advance the Latch D contents
into Latch S2.

39



III. DESIGN FOR TESTABILITY IMPLEMENTATION METHODOLOGY

This chapter discusses the methodology used with the

Genesil Silicon Compiler to implement a chip incorporating

DFT. The different menu features needed, used, and available

within Genesil serve as the chapter subdivisions for present-

ing information on the different actions and multiple criteria

considered during the production of a DFT chip design.

Although the chapter was broken into subsections based on

working with features within Genesil, it must be realized that

chip design in Genesil involves a continuous interrelationship

between all Genesil features available. Results obtained or

decisions made during the progression of design steps while

using one Genesil feature will carry over into the results

obtained or approach taken while using another Genesil

feature. Design in Genesil can be an iterative process

involving multiple cycles of design changes due to information

obtained from the different Genesil features. Specific

information on all aspects of Genesil is provided in the

documentation for the Genesil Silicon Compiler. Additionally,

Reference 13 provides excellent information and a tutorial on

*the methodology for and makeup of a Genesil produced design.

To present a high level view of the chip as a whole, this

chapter starts by presenting a functional description of the

complete correlator chip design. The remainder of the chapter

40



concentrates on the specific reasoning which was used, the

engineering design decisions which were made, and the steps

which were taken to produce the chip design. The second

section in this chapter discusses the operational and engi-

neering design criteria which were established and the

specific methodology steps used within Genesil to produce a

chip which met these criteria. The third section emphasizes

both the steps used and information gained from functional

test simulation and timing analysis. The last section

provides information on how Genesil's Automatic Test Genera-

tion feature was used both to produce a maximum fault coverage

test vector set and to fault grade the test vectors produced

during functional test simulation. Although placed last in

the chapter, this section also provides further analysis on

the process used to decide where to place and how to utilize

the DFT technique of a scan path.

A. FUNCTIONAL DESCRIPTION

The chip which was fabricated is a 16-bit correlator. It

performs a comparison between an incoming 16-bit word of data,

which is placed into the data register, and a preloaded 16-bit

word of data found in the reference register. The chip

performs a bit by bit comparison between the two registers and

produces a 5-bit binary number which indicates the number of

bits, from zero to 16, that are positively correlated

(matched) between the two registers. Additionally, a 16-bit

mask register exists to enable or disable the correlation

41



process for a given set of bits in the data and reference

registers. If the mask register has a specific bit set to a

logic 1 the correlation results for corresponding bits in the

data and reference registers are included in the correlation

process. If the mask register has a specific bit set to a

logic 0 the correlation results for the corresponding bits in

the data and reference register are not included in the final

result which indicates the total number of bits that matched.

The data, reference, and mask registers are all provided with

a means to be selectively loaded in either a serial or

parallel manner. The final correlator chip design is parti-

tioned into five main sections: input registers, XNOR regis-

ter, combiners/testability latches, adder and output. Figure

3.1 is a block diagram showing the relationships and main

signals of these sections.

1. Input Registers

The input section of the chip consists of three

identically designed input register general modules: datain

(the data register general module), ref in (the reference

register general module) and maskin (the mask register

general module) . Each of these input register general modules

holds a 16-bit word to be used during the correlation process.

These 16-bit words can be controllably loaded in either a

serial manner via the SERIAL-IN input pin and serial-in signal

or in a parallel manner using the INPADS[15:0] input pins and

par[15:0] signals. The value of the spcon signal, as input

42



WE IV_ IV
00 - SOPIC$i

0Q

O~2t

.440.

t I-

Figure 3.1 Correlator Chip Block Diagram

43



to the SPCON input pin, determines which load method is used.

If spcon is a logic 1 the 16-bit words are loaded in a serial

manner. If spcon is a logic 0 the 16-bit words are loaded in

a parallel manner. A load control signal (datcon for the

data-in general module, refcon for the refin general module,

and mskcon for the mask-in general module) is used to control

whether an input register general module is allowed to load

data which is present at the SERIALIN or INPADS[15:0] pins

or whether loading is disabled for a particular input register

general module. As a result, the three input register general

modules can controllably load either the same data all at once

or individually load different data one at a time via manipu-

lation of their load control signals.

Each input register general module consists of two

serially connected 8-bit shift register modules, to hold the

16-bit words, and a control block. The shift register modules

(datal and data2 for the data in general module, refl and ref2

for the reference general mcdule, and maskl and mask2 for the

mask general module) are formed from eight D flip-flop/multi-

plexer combinations. During serial loads the input for each

D flip-flop is the output from the previous D flip-flop/multi-

plexer stage. The output line for the MSB of the first shift

register module is connected to the serial input line of the

multiplexer for the LSB of the second shift register module.

Thus the two shift register modules are effectively connected

in a serial manner to form a 16-bit shift register. For

44



parallel loads, the multiplexers get the input values to pass

to the D flip-flops via the par[15:0] signal lines. The

spcon signal controls the multiplexers to determine whether

they pass values to the D flip-flops from their serial or

parallel load lines. The control block for each input

register general module consists of a simple two-input AND

gate which has phaseb of the global system clock as one

input, the appropriate load control signal as the second

input, and which produces the clock signal for the D flip-

flops of the shift register modules as its output. Therefore,

making the load control signals a logic 1 allows passage of

the phase_b clock signal so that the D flip-flops can be

loaded with new values. A load control signal set to logic 0

inhibits the clock signal to the D flip-flops thus causing

them to retain their present values regardless of any changes

to the values present at the chip's serial or parallel input

load pins. Figure 3.2 illustrates a 1-bit wide slice from an

input register general module.

2. XNOR Register

The XNOR register is a random logic module, labeled

xnorreg, consisting of 16 two-input XNOR gate, two-input AND

gate combinations. One combination is used for each of the 16

bit positions for the correlation process. Figure 3.3 depicts

a 1-bit wide slice of the XNOR register module. The two

inputs to the XNOR gates are the outputs from the D flip-flops

of the data and reference registers. The XNOR gate produces

45



Output to
XNOR Register

Paralel Inut DTo Serial Input
MUX Flip-flop of Next Stage

Serial Input

D Flip-flop Clock

sp-con signalAN

phase-b sign~al Loa oto
(clock) Load Control

Figure 3.2 1-Bit Wide Slice of an Input Register

XNOR

Data Register
D Flip-flop Output

Reference Register Correlated Output
D Flip-flop Output ANDtComner to Combiner

Mask Register
D Flip-flop Output

Figure 3.3 1-Bit Wide Slice of the XNOR Register

46



an output which is a logic 1 if these values are positively

correlated (match) and a logic 0 if they are different. Thus

it in effect compares each corresponding bit position in the

data and reference registers. The output of the XNOR gate

along with the output of the D flip-flop from the correspond-

ing bit position of the mask register serve as inputs to the

AND gate. Therefore, the mask register bits determine whether

positively correlated results obtained from the data and

reference registers are passed onwards to be counted or are

blocked from being considered. A logic 1 in a mask register

bit position produces a logic 1 output from the XNOR register

in that bit if the data and reference register words match and

a logic 0 if they do not. A logic 0 in a mask register bit

position causes the XNOR register to output a logic 0 for that

bit position regardless of how the data and reference register

bits correlate. It thus causes that bit position to become

masked from inclusion in the final chip output which indicates

the number of positively correlated bits.

3. Combiners/Testability Latches

The purpose of the two combiners, combinerl and

combiner2, is to collectively reduce the output of the XNOR

register to four 3-bit binary numbers. Each 3-bit binary

number is the summed total of positively correlated, nonmasked

bits from a 4-bit wide slice of the data and reference

registers as output by the XNOR register. Figure 3.4 shows

the logic gate representation of how one 4-bit wide slice of

47



cr c,
0\
xo

0~

0-

C 0 0

48



results from the XNOR register output is summed to produce a

3-bit binary number representing the total of positively

correlated bits. To incorporate design for testability

teatures into the chip, a scan path consisting of serially

connected testability latches was placed between the gates of

the combioer function as indicated by the dashed line of

Figure 3.5. This dashed line represents the demarcation

between the gates, for a given 4-bit slice of the combiner

function, which belong to combinerl and those found in

combiner2. A discussion on why the scan path was placed here

is provided in the last section of this chapter.

The testability latches themselves are located in the

tlatch32 module which is formed from two 16-bit testability

latches (the maximum random logic testability latch size

allowed in Genesil) tlatchO and tlatchl. The testability

latches are operationally controlled via the control signals

ml, m2, and load which originate from the M1, M2, and LOAD

input pins respectively. Additionally, data can be scanned

into and out of the chip through the scan path testability

latches using the testin and testout signals from the TESTIN

input pin and SHIFTOUT output pins. The clocking needed for

the different operations of the testability latches is

provided by the phaseta and phase_tb clock signals derived

from the clock signal input to the CLOCK2 input pin.

49



0

00

00

Fiur 3.-etblt ac lcmn

0



4. Adder

The purpose of the adder section is to take the four

sets of 3-bit binary numbers produced as an output of the

combiner function and add them together to produce a 5-bit

binary number which represents the sum total of all positively

correlated, nonmasked bits between the 16-bit words in the

data and reference registers. The adder module consists of

three adders. There are two 3-bit adders, ADDERO and ADDERi,

which each take two 3-bit binary numbers output from the

combiner function and add them to produce a single 4-bit

number. The third adder, ADDER2, takes the two 4-bit numbers

produced by ADDERO and ADDER1, adds them together, and

produces the 5-bit binary number result on the signal lines

out[4:0]. Figure 3.6 shows the configuration of the adder

module.

5. Output

The output module is included on the correlator chip

as a means whereby the output results of the correlation

process can be controllably turned on or off. This section

consists of five two-input AND gates as shown in Figure 3.7.

Each AND gate has as one of its inputs a single bit from the

final binary number result produced by the adder section and

as its other input the control signal output which originates

from the OUTCON input pin of the chip. The outputs from the

AND gates form the final output signals cout[4:0] which are

sent out of the chip via the output pins OUTPADS[4:0]. Thus,

51



Cou t

Out

I ADDERI

c3out[2:0

c4out(2:01 IIout 
[4:0)

Cout Cout

B ou~ O)Utt~i

ADDERO ADDEE.2

Cin Cin
clout E2;0]

c2out 12.0]O

Figure 3.6 Adder Section Configuration

AND2

AND1 ANO4

crut [4:0]

Output

out [4 At0] AD

Figure 3.7 Output Module Configuration

52



the control signal named output can either activate the chip

allowing results to be presented to the outside world or

inhibit the presentation of these results.

B. DESIGN CRITERIA, DECISIONS AND TECHNIQUES

The final 16-bit correlator chip design produced was

affected by both specific engineering design and operational

criteria and by the procedural steps necessary for designing

a chip in Genesil. Since Genesil produces chips by utilizing

a library of already designed objects (Genesil blocks), the

chip designer must accept the limitations of producing designs

done at the gate level or above instead of working at the

transistor level. Therefore, the cost of working in Genesil

is less ability to optimize the design in terms of performance

and chip size. In contrast, using Genesil provides benefits

related to areas such as reduced design time, a lower level of

required designer knowledge, easy to use simulation capabili-

ties and a fast means of determining fault coverage levels.

For comparison purposes, two 16-bit correlator chips were

designed in Genesil. BASICCHIP is the 16-bit correlator

design discussed in the f. itiunal description without any DFT

technique included. DFTCHIP is the same design but with the

addition of testability latches to form a scan path as

discussed in the functional description. Within the limita-

tions of Genesil, the following set of criteria was estab-

lished for the DFTCHIP:

53



1. Functionally, the DFTCHIP should produce the same
correlation results for a given set of bits in the data,
reference, and mask registers as does the BASICCHIP.

2. The only difference between the DFTCHIP and the
BASICCHIP should be the addition of testability
latches, along with pins for the supporting control,
clock, and I/O signals, to form a scan path.

3. The design area size for the DFT CHIP should be mini-
mized to the greatest extent possible to lower fabrica-
tion costs.

4. The fabrication line and feature size chosen for usage
in Genesil should be compatible with those possible for
chip fabrication via MOSIS.

5. There should be a maximum of 40 pins for the DFT CHIP to
allow it to be accommodated in the test jig available
for use with the commercial tester.

6. The testability latches used should be of the TLATCHL
type to gain the advantages of using a local clock to
perform operations in the scan path.

7. Fault coverage for the chip should be maximized through
the choice of where to place the scan path to increase
observability and controllability.

8. The DFT CHIP should be designed to utilize the highest
clock frequencies possible within the limitations of the
other criteria.

As can be seen, these criteria are divided between those

related to fabrication requirements and those related to

desired performance or operational characteristics.

The overriding criteria for the fabrication requirements

became the need to layout a chip design that was both small

enough and oriented properly to fit within a maximum design

area size of 4.6mm wide by 6.8mm high. This size limitation

originated from the need to keep the fabrication cost for the

chip within a reasonable limit. The size of 4.6mm by 6.8mm is

the largest which could be used for fabrication via MOSIS

54



within the budget allocated for the chip. The criterion

emphasized for performance was maximizing the fault coverage

possible for the chip. This necessitated intelligent place-

ment of the scan path to enhance observability and controlla-

bility. Information on how this was accomplished is located

in the subsection of this chapter titled Automatic Test

Generation and Fault Coverage.

1. Design Decisions and Techniques to Minimize Size

The design steps for the DFTCHIP followed the normal

sequence used in Genesil. First, blocks were chosen from the

available library and combined to form modules. Based on

utilizing individual gates for the designs of the input

registers, XNOR register, combiner and output sections of the

chip, Genesil random logic blocks were use td accomplish

this. Netlisting was used to specify the signal interconnec-

tions between the blocks. The objects making up the input

registers were further netlisted and then floorplanned

together to form larger general modules. Note that at this

point the input register general modules consisted of a single

16-bit shift register and the control block. These actions

resulted in the following modules and general modules being

created: data_in, mask_in, refin, xnorreg, combinerl,

combiner2, tlatch32, adder and output. Next, modules and

general modules were placed into the chip and the independent

blocks (pads) for the input, output, clock, and power supply

pins were added. The chip as a whole was then floorplanned.

55



Finally, the chip was compiled using the VTI-CN20A 2.Oum

n-well CMOS process from VLSI Technology, Inc. as the choice

from among the Genesil supported fabrication lines. To

determine the size of the chip designed, a route plot as shown

in Figure 3.8 was produced.

Since the first design attempt produced a chip of size

5.902mm by 8.276mm, chip size reduction was mandated. Most of

the work done to reduce chip size involved changes to the way

the chip was floorplanned. Floorplanning in Genesil consists

of three categories: placement, pinout and fusion. Placement

determines the manner and orientation in which objects are

physically located next to each other. For the initial design

attempt the Genesil AUTOPLACEMENT (automatic placement)

feature, ARPLACE option was utilized. This feature and

option performs placement based on an attractive repulsive

algorithm which orients objects with many common signals next

to each other irrespective of their sizes [Ref. 14:p. 3-7].

Figure 3.9 shows the placement configuration which resulted

from using automatic placement. To optimize the size in the

subsequent design attempts, manual vice automatic placement of

the objects uas used. Manual placement allows a designer to

specify exactly where items should be located in relationship

to each other. For the DFTCHIP this allowed the input

register general modules to be oriented along the height axis,

at right angles to the other modules, to attempt to form a

rectangle smaller than the 4.6mm by 6.8mm space allotted.

56



EU
lit

E 3 L

Figure 3.8 Route Plot for First Design Attempt

57



01

58



Figure 3.10 shows the modified placement configuration which

resulted from the use of manual placement.

Manual placement still did not solve the size problem.

The chip produced was almost within the width tolerance of

4.6mm but was elongated along the height axis due to the thin,

long nature of the input registers. To solve this problem the

input registers were redesigned. The 16-bit shift register

sections were broken into the two 8-bit shift register

sections discussed in the functional description. The input

register general modules were then refloorplanned, using

manual placement, to place the two 8-bit shift register

sections side-by-side. The resulting input register general

modules were approximately half as elongated and twice as wide

as the original configuration. Figure 3.11 shows the place-

ment configuration of the datain input register prior to the

change. Figure 3.12 (shown at a larger scale) shows the

results after the change. This modification turned out to be

the single largest size reducing decision made for the chip.

Not only did it reduce the elongation of the height axis of

the chip but it also caused less nonoccupied/nonutilized space

to be present within the chip design.

To further reduce the size dimensions, the other two

aspects of floorplanning were considered. First, the floor-

planning pinout feature was utilized. Within general modules

the pinout feature allows choices to be made as to which side

of a general module (north, east, south, or west) connectors

59



adder combiner2

tlatch32
I combinerl

xnox I ect

r d m

e a a

ft s

- a k

i

n i

n n

Figure 3.10 Placement Configuration from using
Manual Placement

60



___ data

\atcon

Figure 3.11 Input Register Placement for Single
16-bit Shift Register Section

datal
data2

datccn

Figure 3.12 Input Register Placement for Two
8-bit Shift Register Sections

61



for signals going to or from the general module will be

placed. By considering how general modules have been placed

within the chip a designer can optimize the routing direction

of signals between general modules and other chip objects.

Connectors for signals in the general modules should be placed

on the side of the general module closest to the chip objects

which share the signals. Figure 3.13 is an example of the

pinout form used to specify connector edge locations for a

general module. At chip level pinout determines the pad

placement locations for signals which exist external to the

chip. By placing pads for specific signals as close as

possible to the objects using these signals wire lengths and

routing complexity within the chip can be decreased.

The last feature of floorplanning utilized to reduce

the chip size was the fusion feature. Fusion determines the

assignment of routing channels which affect wire routing

within the floorplan of the chip [Ref. 15:p. 7.5]. Routing

channels are formed through the fusion of two objects, the

fusion of one object to a previously defined fusion region, or

the fusion together of two previously defined fusion regions

[Ref. 15:p. 7.5]. Chip size can be minimized by performing

fusion in a sequence that fuses together items whose adjacent

boundaries are the same length [Ref. 15:p. 7.5]. Genesil

offers the features of both AUTOFUSE (automatic fusion) and

FUSE (manual fusion). AUTOFUSE automatically fuses together

all items not already fused but does not necessarily produce

62



Genesil Version v'7.1 -- Sat May 5 15:06:22 1990
Module: -genpooie:/pooler/DFTCHIP/data-in

Floorplan

Mode: ADDCONNECTOR MOVE-CONNECTOR REMOVE-CONNECTOR

Edge: NORTH SOUTH EAST WEST

NORTH -CONNECTOR EASTCONNECTOR SOUTHCONNECTOR WESTCONNECTOR
dfou--L' [1___ >_______ serial in____ ______

datcor._____ >________ SpD cor-.____
dfout [1] >___ _______

df out, 2]____
df11out: [31 ___

dfout [4] ____

dfouc [5] ____

dfour [r)] ___

(ifou-, f7] ____

dfou: [81 ____

dfout [9 _____

dfout [101 ]__
df ou -- Il 11___

dfout: .12"___

df o). ' 113 ____

dtfour [:14]____

p ar [_____]

par: i____
pa: [4 _____

par [3.______
par [41E _____

p~ir [7 ______

par[6I ______

par [8.______
par [I(). _____

par [1r1 _____

par [il ______

par [111 ______

par [14 ____

par [151 _____

phas -a___

rphas- b_____

Figure 3.13 Pinout Form to Specify Connector Edge Locations

63



the most efficient floorplan [Ref. 15:p. 7.17]. To help

reduce the chip size a change was made from using automatic

fusion on the first design attempt to using manual fusion on

subsequent design attempts. The ability to reduce chip size

through intelligent manual fusion decisions was validated

during this process. However, if manual fusion is going to be

used it must be done carefully since it was determined 'hat

unwise fusion order choices can have highly adverse effects on

overall chip size.

Upon completion of all the changes discussed concern-

ing floorplanning the chip size had been reduced to 4.743mm by

6.727mm. To achieve the additional small reduction in size

needed for the width axis two additional design decisions were

considered. First, Genesil provides the choice of using

either TTL or CMOS drivers for output pads. Output pads using

CMOS drivers are larger than those using TTL drivers and will

increase the size of the pad ring surrounding the core of the

chip [Ref. 16:p. 5-4]. Secondly, Genesil provides two options

for electro-static discharge (ESD) protection for input pads.

ESD circuitry is used to prevent the damaging buildup of large

static voltage potentials at input pads, which is common to

CMOS chips, by providing a low-impedance discharge path

chrough diodes to either the VDD (power) and or the VSS

(ground) supplies [Ref. 16:p. 5-3]. Genesil provides two ESD

protection options when specifying the input pad configura-

tion. NP-PROTECT uses protection diodes connected to both the

64



VDD and VSS supplies but produces pads larger in size than N-

PROTECT which provides only a protection diode to the VSS

supply [Ref. 16:p. 5-3]. The initial chip design utilized TTL

output drivers and the NP-PROTECT option. To achieve the

remaining size reduction needed, the final DFTCHIP dezign

sacrificed some degree of protection by using only the N-

PROTECT option. This choice reduced the final design to a

size of 4.550mm by 6.627mm. Figure 3.14 is a route plot for

the DFTCHIP which shows the final configuration results

obtained for the overall size minimization process.

2. Additional Design Decisions and Techniques

The remaining design decisions made for the DFTCHIP

can be split into those related to scan path operations and

those related to pad specifications. Based on the criteria of

desiring scan path operations to be able to proceed indepen-

dently of the global system clock, the TLATCHL testability

latch configuration was chosen to form the elements of the

scan path. Only this Testability Latch configuration, from

among those available in Genesil, provides the ability to work

with a local clock for scan path operations. The criteria

requirement itself was established to enhance chip capabili-

ties by providing both a method to perform in-system testing

of an operating chip and to allow operation of the scan path

a different clock rate from that of the rest of the system.

In-system testing for a chip involves checking its operating

condition without removing it from its physical working

65



cC C

wj (0j*

L C

Figure 3.14 DFTCHIP Final Configuration Route Plot

66



environment. This could be done in the DFTCHIP by halting

normal chip operations through either disabling the load

control signals (datcon, mskcon and refcon) to the input

registers or through disabling the testability latch load

signal. The chip would then be in a test mode where the local

scan path clock scans test vectors into or out of the chip to

check its operation. The use of the TLATCHL configuration was

also chosen to attempt to make possible the use of a clock for

scan path operations that both runs at a higher speed than the

global system clock and that can continue scan path operations

during periods when the global system clock is not operating.

These features would help speed the rate at which test vectors

or test results could be scanned into or out of the chip and

also would enhance the chip's in-system testing capabilities.

Design choices for the pad specifications were made to

enhance operational performance while still being conservative

enough to help insure that the fabricated chip would operate

satisfactorily. First, pads for power supplies had to be

provided to the chip. Genesil produces designs which require

power for two separate regions: the chip core and the pad ring

(Ref. l:p. 5-59]. Options exist in Genesil to provide this

power through either separate VDD and VSS pad pairs for each

region or through a single combined pad pair for both regions.

Except for small pad-limited designs, the combined option is

not recommended since it does not provide any isolation from

noise which might be generated by the output pad drixers

67



[Ref. 16:p. 5-61]. Therefore, the conservative choice of

using separate VDD/VSS pad pairs for the riog and core power

supplies was made for the DFTCHIP.

Next, the specifications were made for the clock pads

used by the input signals for the global system clock and the

scan path local clock. Genesil clock pads convert a single

external clock signal into internal two-phase non-overlapping

clock pair signals required to operate genesil blocks

[Ref. 16:p. 5-15]. The DFTCHIP uses the clock pad option of

NODIVIDE which provides internal clock signals at the same

frequency as the external clock signal. Clock pads have their

own power source requirements which depend on the loading

placed on them. The primary global system clock must be

provided with its own power pads (VDD and VSS) which are

isolated from the ring power supplied to the other ring pads

[Ref. 16:p. 5-25]. To accomplish this requirement the

LOCALISOLATED option was chosen for the primary global system

clock pad. This choice produced a clock pad with its own VDD

and VSS inputs attached. For additional clock pads in a

multiple clock design the requirement for isolated power is

dependant upon the degree of loading placed on the clock

signals. A lightly loaded clock (520pF) can utilize power

distributed by the ring power pads vice needing its own power

supplies [Ref. 16:p. 5-26]. Since the local clock for the

scan path testability latches met this requirement, ring power

was used vice choosing isolated power. Note that the maximum

68



operating frequency to be used for the clocks is not chosen in

the pad specification but rather is done during the netlisting

process for the clock signals.

Decisions concerning the input pads were made next.

The decision on ESD was described previously in the section on

minimizing chip size. The other design decision for the input

pads was to choose whether external signals would be latched

or passed completely untouched from outside to inside the

chip. For the DFTCHIP, Genesil's Direct option, which

provides a transparent latch at the input pad, was chosen. A

latch configuratiLn was chosen to ensure that there would be

at least a half clock cycle during which unchanging input data

could propagate to and be placed into the input registers.

Input data is sampled and passed during phase b of the latch

clock signal and is held during phasea [Ref. 16:p. 5-39].

Arter chip fabrication, a major design error was discovered

concerning the clock signal used to control the latch for the

scan path input pad. Instead of specifying sampling during

phase-tb of the local scan path clock, the genesil default of

:hasea of the global system clock was accepted as the

controlling clock signal. The result of this design oversight

2s the negation of the ability to conduct scan-in operations

for the scan path at either a rate faster then the global

system clock or when the global system clock is not operating.

Since this ability was part of the reason for choosing the

TLATCHL type Testability Latches, this error was quite costly

69



in terms of available chip operational performance character-

istics.

Lastly, decisions were made concerning the output

pads. Output pads also have options concerning the presence

or absence of latches. Again a transparent latch option was

chosen to help ensure that the final results presented off

chip would be stable for at least half a clock cycle. The

transparent latch for output pads samples values during

phasea of its controlling clock and holds values during

phase_b [Ref. 16:p. 5-39]. The controlling clock signals were

correctly specified for the output pads. The output pads for

the correlated results have their latches controlled via the

global system clock. The scan path output pad latch uses the

local scan path clock like it should thus allowing scan-out

operations to proceed either at a faster rate then that of the

global system clock or during periods that the global system

clock is not operating. Finally, Genesil offers options on

the drivespeed available for the output pads. The choice

which can be made is dependant upon the number of VDD/VSS

pairs present to provide ring power. A single pair as in the

DFTCHIP can drive six output pads at very high speed, 12 pads

at high speed, 20 pads at low speed, or 40 pads at very low

speed [Ref. 16:p. 5-37]. Since only six output pads exist for

the DFT_CHIP, the very high speed DRVSPEED3 option was chosen.

70



C. SIMULATION AND TIMING ANALYSIS

Genesil's ability to perform simulation and timing

analysis provides a convenient means to evaluate and analyze

chip performance and functionality characteristics during the

design process. Simulation and timing analysis are indepen-

dent operations within Genesil's working environment. Both of

them can and should be used during the entire design process

for a chip. By performing analysis on individual modules

before combining them into a chip design, timing or logic

functionality errors can be easily debugged. Upon completion

of a chip design, simulation and timing analysis provide a

final verification that the design performs as desired.

1. Simulation

Simulation within Genesil is the process by which a

chip design is evaluated to verify that both the implemented

design and the physical layout generated from that design

function as intended. Through the simulation process, outputs

can be checked against a given set or sequence of inputs to

verify that the design is logically correct. Genesil performs

simulation using either a functional model or a switch-level

model.

Simulation done using a functional (GFL) model is a

technology and layout independent process. GFL simulation

utilizes gate-level, zero-delay models of objects within the

design [Ref. 17:p. 2-4]. Technology and layout independence

is achieved by considering only the circuit functionality

71



characteristics and changes in input signals rather than

looking at the actual delay times found within a circuit

design [Ref. 17:p. 1-2]. GFL simulation uses a demand-

evaluation algorithm which simulates only the minimum logic

necessary to check for correct results [Ref. 17:p. 2-1]. Only

block definitions and netlisting need to be accomplished prior

to running a GFL simulation test.

In contrast, switch-level (GSL) model simulation is

designed to verify functionality at a switch level once a

particular technology is specified and the object layout is

completed via use of the floorplanning and compilation

processes [Ref. 17:p. 2-2]. GSL simulation uses an event-

driven algorithm which forces any changes caused by an event

to propagate through the design based on detailed timing

information obtained from the Genesil Timing Analyzer for the

particular technology and layout chosen [Ref. 17:p. 2-2]. GSL

simulation is normally used only as a final design verifica-

tion step during the design process.

Simulation operations in Genesil can be done in either

a manual interactive mode or in an automatic control mode.

The manual mode requires that the user specify each input,

manually advance time via cycling the clocking signals, and

individually verify each output. The automatic control mode

allows simulation to proceed without user interaction by

either operating on a set of test vectors which provide input

signals and expected output signals or by using Genesil

72



simulation routines called check functions. The automatic

control mode both runs faster than the manual mode and if test

vectors are used can provide error messages to indicate

differences between actual and expected output results

[Ref. 17:p. 1-3].

Check functions in Genesil provide an automated

approach to both simulate circuit operation and to generate

test vector sets. Check functions consist of user defined

simulation routines written in a proprietary Genesil language

called GENIE. The GENIE language provides basic commands which

can accomplish all the needed operations to perform simulation

on an object. Reference 17 Appendix B provides specifications

for the GENIE commands which can be used during simulation.

In the manual interactive mode these commands are issued one

at a time. By combining these basic commands into a check

function routine, a complete simulation task can proceed by

using only the check function name as a command. High level

check functions can also be written which call lower level

check functions and individual GENIE commands. This allows

complete simulation procedures to be written for use in a

batch type mode.

If check functions and GENIE commands are used in

conjunction with the traceobj command, test vectors can be

produce from simulation runs. The traceobj command causes all

inputs and outputs obtained from the simulation run to be

captured in a MASM test vector file. The MASM test vector

73



file format contains a list of all the inputs presented and

the outputs obtained at each timepoint during the simulation.

This MASM format is the same as that used by the Automatic

Test Generation process. Therefore, test vectors produced via

the simulation process using the traceobj command can be fault

graded in the Automatic Test Generation program. Similarly,

test vectors produced by the Automatic Test Generation Program

can be run in the simulator to verify their correctness.

Finally, test vector files for the physical testing of a chip

design can be obtained by porting the MASM test vector files

to the format needed by a commercial chip tester. Figure 3.15

shows the format of a MASM test vector file.

Simulation results can be presented in either a

numeric mode on the message screen or as a screen-based output

which can show individual signals in both a tabular and

waveform type format. Numeric outputs to the message screen

are obtained by using the RUNVECTORS command on a set of

simulation test vectors which have already been produced in

MASM file format. To produce screen-based outputs a formatted

screen must be set up for use as detailed in Chapter 4 of

Reference 17. Figure 3.16 and Figure 3.17 are examples of the

message and formatted screen type results which can be

obtained.

To accomplish simulation of the DFTCHIP, check

functions were written and used to allow simulation steps to

progress in an automated manner. Two categories of check

74



CODEFILE
INPUTS
CLOCK(clock),CLOCK2(clock),DATCON(to-O),IN PADS [15:0] (to-0),
LOAD(to=0) ,MI (to=0) ,M2 (to=0) ,MSKCON(to=0) ,OUTCON(to=0),
REFCON(to-0),SERIAL IN(to-O),SPCON(to-0),TESTIN(to-0);
OUTPUTS OUTPADS[4:0J,SHIFTOUT;
CODING(ROM)
0 <0010000000000000000100111000 > ......

@5 <0110000000000000000100111000 > .......
010 <1110000000000000000100111000 >00000.;
@15 <1010000000000000000100111030 >00000.;
@20 <0010000000000000000101111000 >00000.;
025 <0110000000000000000101'0ii0 >00000.
@30 <1110000000000000000101111000 >00000.
@35 <1010000000000000000101111000 >00000.;
@40 (0000000000000000000100010000 >00000.;
@45 <0100000000000000000100010000 >000000;
@50 <11000000000000000001C0010000 >000000;
@55 <1000000000000000000100010000 >000000;
@60 <0001111111111111111100110000 >000000;
@65 <0101111111111111111100110000 >000000;
@70 <1101111111111111111100110000 >100000;
@75 <1001111111111111111100110000 >100000;
@80 <0001111111111111111100011000 >100000;
@85 <0101111111111111111100011000 >100000;
090 <1101111111111111111100011000 >000000;
@95 <1001111111111111111100011000 >000000;
@100 <0010000000000000000100010000 >000000;
@105 <0110000000000000000100010000 >000000;
@i0 <1110000000000000000100010000 >000000;
@115 <1010000000000000000100010000 >000000;
@120 <0010000000000000001100010000 >000000;
@125 <0110000000000000001100010000 >000000;
@130 <11100000000C000001100010000 >000010;
@135 <1010000000000000001100010000 >000010;
@140 <0010000000000010010100010000 >000010;
@145 <0110000000000010010100010000 >000010;
@150 <1110000000000010010100010000 >000100;
@155 <101000C000000010010100010000 >000100;
@160 <0010000000100100010100010000 >000100;
@165 <0110000000100100010100010000 >000100;
@170 <1110000000100100010100010000 >000110;
@175 <101000C000100100010100010000 >000110;
oleo <0010000000100100011100010000 >000110;
@185 <0110000000100100011100010000 >000110;
@190 <1110000000100100011100010000 >001000;

@195 <1010000000100100011100010000 >001000;
@200 <0010001001000110100100010000 >001000;
0205 <0110001001000110100100010000 >001000;
@210 l1110001001000110100100010000 >001010;
0215 <1010001001000110100100010000 >001010;
0220 e0010010001101000101100'01OnNO >001010;

Figure 3.15 MASM Test Vector File Format

75



trace running from vecspara Sat Jun 2 13:30:54 1990
CCD I LMMMORSS T 0 S
LLA N O12SUEEP E U H
OOT A KTFRC S T I
CCC P D CCCIO T F
KKO A OOOAN I P T

2N D NNNL N A O
S D U

Y S T
1 N
5 4

0 0

bbb xxxx bbbbbbbb b xx b
adq

0: 001 0000 10011100 0 >
5: 011 0000 10011100 0 >

10: 111 0000 10011100 0 > 00
15: 101 0000 10011100 0 > 00
20: 001 0000 10111100 0 > 00
25: 011 0000 10111100 0 > 00
30: Ill 0000 10111100 0 > 00
35: 101 0000 10111100 0 > 00
40: 000 0000 10001000 0 > 00
45: 010 0000 10001000 0 > 00 0
50: 110 0000 10001000 0 > 00 0
55: 100 0000 10001000 0 > 00 0
60: 000 ffff 10011000 0 > 00 0
65: 010 ffff 10011000 0 > 00 0
70: 110 ffff 10011000 0 > 10 0
75: 100 ffff 10011000 0 > 10 0
80: 000 ffff 10001100 0 > 10 0
85: 010 ffff 10001100 0 > 10 0
90: 110 ffff 10001100 0 > 00 0
95: 100 ffff 10001100 0 > 00 0
100: 001 0000 10001000 0 > 00 0
105: 011 0000 10001000 0 > 00 0
110: 111 0000 10001000 0 > 00 0
115: 101 0000 10001000 0 > 00 0
120: 001 0001 10001000 0 > 00 0
125: 011 0001 10001000 0 > 00 0
130: Ill 0001 10001000 0 > 01 0
135: 101 0001 10001000 0 > 01 0
140: 001 0012 10001000 0 > 01 0
145: 011 0012 10001000 0 > 01 0
150: 111 0012 10001000 0 > 02 0
155: 101 0012 10001000 0 > 02 C
160: 001 0122 10001000 0 > 02 0
165: 011 0122 10001000 0 > 02 0
170: 11 0122 10001000 0 > 03 0
175: 101 0122 10001000 0 > 03 0
180: 001 0123 10001000 0 > 03 0
105: 011 0123 10001000 0 > 03 0
190: 111 0123 10001000 0 > 04 0
195: 101 0123 10001000 0 > 04 0
200: 001 1234 10001000 0 > 04 0

Figure 3.16 Message Screen Style
Simulation Results

76



Chip: -genpooler/YDoler/DFTCHIP Functional Simulator
.......................------ -Genesil Version v7.1 -----------------------------

OTIMEPNT DATCON REFCON SPCON IN PADS OUTPADS TESTIN SHIFTOUT
0 80 0 0 0 FTEF 10 0 0
o 85 0 1 0 FOFO 10 0 0
0 90 0 1 0 FOFO 08 0 0
0 95 0 1 0 FOFO 08 0 0
o 100 0 1 0 FOFO 08 0 0
0 105 1 0 0 FOOF 08 0 0
O ii0 1 0 0 F00F 08 0 0
o 115 1 0 0 FOOF 08 0 0
O 120 .1 *0 *0 *FOOF *08 *0 *0

OTIMEPNT CLOCK CLOCK2 MSK. )17 SERIALIN dfout rfout mfout
0 80 0 0 1 0 0000 0000 FFFF
o P5 0 1 0 0 0000 0000 FFFF
0 90 1 1 0 0 0000 FOFO FFFF
o 9s 1 0 0 0 0000 FOFO FFFF
0 i00 0 0 0 0 0000 FOFO FFFF
o 105 0 1 0 0 0000 FOFO FFFF
O 110 1 1 0 0 OOF FOO FEkF

o 115 1 0 0 0 FOOF FOFO FFFF
o 120 *0 .0 *0 *0 *FOOF *FOF0 *FFFF

25 30 35 40 4 50 55 60 65 70 75 80 85 90 95 10 10 11 11 12
05050

---- -- - --- - - . . + - --- ,- - - - - +-CLOCK + .. . + . . * .. . * . . . - .

- --,- - - -- I. . ++- + . . .- -. . . + . . - -

phas c ta ---- --- -- ----- + - -----

phaseta . . +. . . +.. . . . . . .

. . . . . . . . . + -. . . + + . . . + . . .- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - -

INSERT MESSAGES GRAPHICS FORM OVKKLAY RECORD UTILITY

BACK QUERY HIER LEVEL ENVIRONMENT NEWSCREENS
BIND CYCLE RUJ VECTORS SCROLL PICKSCREEN
ASSERT STEP UNBI N FIGHTS FORMATSCREEN

PROPAGATE VERIFY VALUE

>SIM7LATION

Figure 3.17 Formated Screen Style Simulation Results

77



functions were written. Basic building block type check

functions were written to accomplish limited simulation tasks.

These check tuinctions are also convenient for use during manu-

al interactive simulation sessions. High level check func-

tions were then written to automatically accomplish a complete

simulation test by sequentially calling a set of the basic

check gunctions.

The Lollowing basic building block check functions

were written and used during simulation on the DFTCHIP:

1. MSP - Junction to set the mask register values in a
parallel manner.

2. RSP - function to set the reference register values in
a parallel manner.

3. DSP - function to set the data register values in a
parallel manner.

4. TSS - function to serially load 32 bits of data into the
scan oath.

5. T& - function to serially load one to 32 bits of data
irto the scan path.

6. SS - function to serially shift data into the data,
reference, and mask registers and optionally at the same
time load data into the scan path.

7. force in - function to force values from the scan path
latches into the data latches of the testability
latches.

8. swap in - functiun tc swap the contents of the data and
scan path latches in the testability latches.

9. samplein - function to sample and replace the scan path
latch values with the data latch values in the testabil-
ity latches.

10. LSt - function used to assign the next bit of data which
will be serially loaded via the serial input pin.

78



11. tog - function to set up toggle patterns for the clock

signals.

12. untog - function to untoggle the clock signals.

The complete GENIE language code written for these check

functions is contained in Appendix A.

Complete functional simulation testing of the DFTCHIP

was accomplished using the following high level check func-

tions:

1. initall - function to initialize the values present at
all input and output pins of the chip.

2. test_parallelin - function to test the chip during
parallel load operations.

3. test serial in - function to test the chip during serial
load operations.

4. test force - function to check force operations after
serial loads of the scan path.

5. test scan clock - function to test the ability to
operate the local scan path clock at a faster rate than
the global system clock and to test the ability to
conduct scan path operations during periods that the
global system clock is not operating.

Each of these functions includes the traceobj command to

produce MASM test vector files. The complete code written for

these check functions is contained in Appendix B. These check

functions were used to verify the functional operation of the

chip using both GFL and GSL models. The results from these

sir,']a*icn operations indicated that the DFTCHIP would

function as desired once it was fabricated.

2. Timing Analysis

Genesil's Timing Analyzer feature provides an easy to

use means of evaluating the timing characteristics and

79



relationships of a chip design. It uses algorithms, which do

not need or make use of test vectors, to produce reports on

the following timing characteristics [Ref. 18:p. 1-1]:

Maximum operating speed
Speed limiting paths within the design
Constraints on duty cycles
Input setup and hold times
Output delays
Signal delays, setup, and hold times for internal nodes
Path delays between internal nodes.

Through an examination of these reports changes can be made to

a design to help insure that it will operate without timing

problems. Also, this information can be used to optimize chip

speed performance for a design which is required to operate in

an environment needing a specific minimum operating frequency.

For the DFTCHIP design the main use of the Genesil

Timing Analyzer was to verify that there were no timing

relationship conflicts and to determine the anticipated

maximum operating frequency for both clock signals on the

chip. Since chip size not operating frequency became an

overriding design criteria, the timing information was not

used to redesign the chip layout to provide increased chip

speed. However, it was used to gain information on the

maximum anticipated clock frequencies. These clock frequen-

cies were then specified for the clock signals during the

netlisting process. Doing this insured that the compilation

process would produce a fabrication layout able to handle the

maximum clock frequencies calculated by the Timing Analyzer

80



for the specific signal paths and internal components of the

DFTCHIP.

Three specific Timing Analyzer reports were looked at

for the DFTCHIP. First, the CLOCKS command was issued to

generate a Clock Report. This report provides details on the

maximum operating frequency and duty cycle limitations for a

particular clock signal. Included is information on the

minimum high phase times for the internal nonoverlapping phase

signals derived from the clock signal, the minimum nonsymmet-

ric and symmetric clock signal times, and details concerning

the worst case paths for each of the phases of the clock

signal [Ref. 18:p. 5-4]. Second, the SETUPHOLD command was

used to generate a Setup and Hold Mode Report which indicates

the setup and hold times needed for each input signal relative

to the falling edge of the clock signal [Ref. 18:p. 6-1].

Finally, the VIOLATIONS command was issued to produce a

Violations Report which indicates if any internal hold time

violations exist for the design configuration produced

[Ref. 18:p. 11-1]. It is a Genesil requirement that a

Violations Report be generated and checked for all Genesil

chip designs prior to design tapeout for fabrication to insure

that the design will not experience internal timing problems

after return from fabrication [Ref. 18:p. 11-1].

Since there are two different clock signals utilized

for the DFTCHIP, all three timing analysis reports had to be

run twice. Based on the information obtained from these

81



reports the maximum expected operating frequencies for the

DFTCHIP were 4.43 MHz for the global system clock signal

CLOCK and 28.6 MHz for the local scan path clock signal

CLOCK2. Appendix C provides the complete timing analysis

reports generated for both clock signals.

D. AUTOMATIC TEST GENERATION AND FAULT COVERAGE

The usage of Genesil's Automatic Test Generation (ATG)

feature was extremely important to the work done for this

thesis. It allows an exploration into the need for and

effects of including DFT features in a chip design. The ATG

feature provides a method to automatically generate test

vectors which will uncover defects that occur due to the

manufacturing (not design) process. ATG looks at manufactur-

ing defects in terms of stuck-at 0 and stuck-at 1 faults. By

running ATG for an object under design, test vectors are

developed to uncover these stuck-at faults. Through a process

of fault grading, ATG also determines the fault coverage for

the test vectors it develops. When properly enabled, the ATG

feature will produce a set of maximum possible fault coverage

test vectors for the current design configuration of the

object being developed. Therefore, by examining the achiev-

able fault coverage level for an object, the effects of

including DFT features into a design are quickly determined.

[Ref. 19:p. 1-1]

Genesil produces its fault coverage results through use of

the classical D algorithm. This algorithm provides an algebra

82



for simplifying the computational tasks of testing for faults

within a design. The D algorithm utilized by Genesil uses a

process called justification to determine the inputs to apply

to the design and a process called sensitization to check the

outputs which will result for a specific sequence of events.

[Ref. 19:pp. 1-2, 1-3]

Justification is related to the controllability of being

able to set the inputs of a gate to specific values. The ATG

justification process places desired values on the gate under

test and then tries to back these values out of the circuit to

primary inputs. If this process of backing the values out of

the design is successful without producing any conflicting

values on the primary inputs then the stuck-at test for that

gate is said to be justified and the inputs to the gate are

determined to be controllable.[Ref. 19:p. 1-4]

Sensitization is closely related to the observability of

a circuit. It is the process of propagating the output of a

gate being tested to a primary output of the circuit. If this

is accomplished then the stuck-at test for the gate is said to

be sensitized and the design configuration allows for observa-

bility of the output node of the gate.[Ref. 19:p. 1-4]

During the ATG process, Genesil first accomplishes an

initial pass over the design to locate any faults which are

obviously untestable and also to develop a testing priority to

conduct tests first on those nodes which have the highest

degree of obserability and controllability. To speed the

83



test process, ATG uses a modified breadth-first search to look

simultaneously at multiple paths to the primary inputs and

outputs. ATG takes a single step along a given path during an

evaluation of justification or sensitization, checks and puts

the results for that path and step onto a list of pending

processes, and then moves to the next path possible for that

particular step. This causes a gradual expansion of the test

process at each step. By doing this rather than checking just

one path at a time, conflicts caused by any incompatible

assertions, which may result during the justification and

sensitization process, are recognized quicker. This helps to

speed up the rate at which the overall ATG process can be

accomplished.[Ref. 19:p. 1-7]

The penalty paid for the speed up possible from doing the

breadth-first search is that if a conflict is found ATG has to

retrace its steps all the way to the test assertion that

caused the conflict. Then, all just, i.cation and sensitiza-

tion evaluations must be repeated between the point of the

assertin and the location at which the conflict was discov-

ered. In doing this, paths not related to the conflict also

are forced into being rechecked. To minimize the amount of

work that needs to be redone, ATG partitions assertions into

different search groups that it organizes based on a determi-

nation of which portions of the circuit are independent from

each other. Therefore, a conflict in one search group does

84



not extend the need to rework justifications or sensitizations

into another search group. [Ref. 19:p. 1-8]

Since the test algorithm used by the ATG process is trying

to back justifications out of or propagate sensitizations

through a circuit, sequential logic may present problems

during the development of a test strategy. To handle sequen-

tial circuits the ATG process utilizes a method called time

unrolling. This method has the effect of translating sequen-

tial circuit elements into combinational circuit elements that

are examined over a restricted time range. This translation

process can be viewed as producing a three dimensional set of

combinational circuits where the third dimension is related to

the number of timepoints that originate from the feedback path

of the sequential circuit. The time window for the number of

timepoints considered during the ATG process may be either a

default based on Genesil's determination of the sequential

depth of individual nodes in the object or it may be limited

to a user specified number. The higher the number the slower

the ATG process will proceed, but a higher number may produce

a greater fault coverage or a denser maximum fault coverage

test vector set.[Ref. 19:pp. 1-6, 1-7]

To run the ATG process on an object the following parame-

ters from the ATG Control section of the ATG form must first

be specified:

1. Output File - specifies the file to which the test
vectors produced by ATG will be written.

85



2. Sequential Depth - determines the maximum number of
timepoints which can be used to try and instantiate a
specific fault test. Using the parameter of -1 provides
a default for each node based on the shortest path from
the node to a primary output.

3. Random Input Vectors - determines the number of random
seed vectors the ATG process will generate and use as
inputs. Using random input vectors may speed up the ATG
process. Choosing a parameter of -1 will provide the
same number of random vectors as the maximum sequential
depth found in the object.

4. Initialization Vectors - determines the number of
vectors from the Input File which will be run as
simulation only to provide an initialization effect for
the object. These vectors will not be included in the
output test vector file. Any remaining vectors from the
Input File will have the normal ATG process run on them.

5. Default Toggles - determines if the default toggle
definition will be used for the clock signal in the
circuit. Selecting NO will cause the clock toggle
definition to be obtained from the Startup File if it
exists.

6. Limit Time - determines the time limit (in CPU time
usage) for which the ATG process will run. Selecting NO
specifies unlimited time (although the ATG process may
still quit if it is not able to instantiate a fault test
after running a large number of test vectors).

7. Limit Coverage - selecting YES and specifying a fault
coverage value will halt the ATG process when that fault
coverage value has been obtained. Selecting NO indi-
cates a default of 100 percent fault coverage.

8. Fault Grade Only - selecting YES allows the previously
generated set of MASM test vectors specified as the
Input File to be fault graded.

9. Enable Input File - selecting YES and specifying a file
name provides the file to be used during either the
initialization process or the file to be fault graded.

10. Enable Startup File - must be selected as YES and have
the Startup File name provided for cases where the
Default Toggles parameter is set to NO. The Startup
File contains the clock toggle definitions which will be
used to replace the default toggle definition. All
chips with two or more clocking regimes must specify the
clock toggle definitions in a Startup File. Reference

86



19, Appendix B provides examples of the toggle defini-
tions which can be written for chips with multiple
clocking regimes.

11. Enable DFT File - determines if a DFT file will be used
to specify artificial primary inputs, outputs, and no
connects. This feature allows the designer to specify
additional inputs and outputs at internal circuit
locations during the initial design process to help
determine if including DFT features will raise the fault
coverage possible. Select NO for this parameter for
final chip testing using the ATG process.

12. Enable Coverage In - selecting YES causes the ATG
process to consider a coverage map from a previous ATG
run when it starts the present run. Coverage maps are
files which provide the ATG process information on which
faults remain to be tested in a design.

13. Coverage Output File - specifies the name of the
coverage map file to which coverage information will be
written.

Once all ATG Control section parameters are specified the ATG

process is started by selecting RUN_ATG from the menu of the

ATG form.[Ref. 19:pp. 4-4 - 4-7]

Once the ATG process is running its current status can be

displayed in the ATG Status section of the ATG form. To

update the status to the present time select the UPDATESCREEN

choice from the ATG form menu. As an alternative, the status

can be continuously updated and displayed by issuing the

command updateloop at the ATG form command line prompt

[Ref. 19:p. 4-11]. The ATG process runs in the background.

This allows other Genesil activities to be performed while

waiting for ATG to complete unless the status is continually

being updated via the update loop command [Ref. 19:p. 4-2].

Figure 3.18 shows a complete screen view of the ATG form, to

87



F* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Chip: -genpooler/pooler/DFTCHIP ATG Control Program
----------------- Genesil Version v7.1--------------------------------

ATG Control

Output File: > maxcov-example_____
Sequential Depth: >' -1
Random Input Vectors: > -1
Initialization Vectors: > 0
Default Toggles: IN-O7YES
Limit Time: NO0 YES
Limit Coverage: rFNOYES
Fault Grade Only: N iYES
Enable Input File: FN',YES
Enable Startup File: NO YES
Startup File: > clocks___________
Enable DFT File: NO]YES
Enable Coverage In: NO --YES
Default Coverage Out: NO fES

ATG Status

Vector Tests CPU Time (h:rn:s)

Change Tested Percent Change Total

10 9 224 10.48 10 1:37

11 .5 229 10.71 23 2:00

Command Status

ATG ruriing

INSzFRT MESSAGES GRAPHICS FORM OVERLAY RECORD UTILITY

Nop CHECK_FORM RUNATG DUJMPCOVERAGE UPDATESCREEN
ACCEPTFORM SAVE HALTATG EDTSTARTUP VIEWLOG
PIGEONHiOLE TEXT-SPEC KILLATG EDIT DFr ANALYZE
CANCEL ENABLECURRENCY

>ATG>

Figure 3.18 ATG Form screen Display

88



include the ATG Control and Status sections, for an example

case of running ATG on the DFTCHIP.

Upon completion of the ATG process (through either

expiration of the specified time limit, achievement of the

specified fault coverage level, or completion of fault grading

for an input test vector set) the final results can be

examined in depth by selecting the ANALYZE command from the

ATG form menu. If the ATG process has not yet finished, it

can be forced to stop by choosing the HALTATG command from

the ATG menu. The ANALYZE command will then provide results

based on all tests made prior to the halt being issued. Once

ANALYZE is chosen a new menu is presented which allows the

fault coverage statistics to be examined from the top level of

chip down to the individual gate level. At the gate level the

individual stuck-at faults which have or have not been tested

are listed. Exanination of this information provides the

details on what portions of the design contains gates which

the ATG process has not been able to fault test. Based on

this information the design can be modified or DFT features

can be included to raise the fault coverage obtainable.

Figure 3.19 is an example for the DFTCHIP of the format and

type of infcrmation which can be provided by using the ANALYZE

command.[Ref. 19:p. 5-2]

The starting use of the ATG feature was to look at the

characteristics of the BASICCHIP design. First, the ATG

process was run, with no limits on either time or fault

89



FAULTS
/ (module): 2003 tests out of 2137 (93.7295%)

combiner2 (module): 74 tests out of 80 (92.5%)
AND5 (module): 2 tests out of 3 (66.6667%)

and (AND): 2 tests out of 3 (66.6667%)
XOR6 (module): 3 tests out of 4 (75%)

xoz (XOR): 3 tests out of 4 (75%)
XOR4 (module): 2 tests out of 4 (50%)

xoz (XOR): 2 tests out of 4 (50%)
XOR2 (module): 3 tests out of 4 (75%)

xor (XOR): 3 tests out of 4 (75%)
XORo (module): 3 tests out of 4 (75%)

xoi (XOR): 3 tests out of 4 (75%)
serialinput (module): 2 tests out of 4 (50%)

idatala b[0] (LATCHM): 2 tests out of 4 (50%)
ref in (module): 240 tests out of 259 (92.6641%)

iefcontrol (module): 2 tests out of 3 (66.6667%)
ANDO (module): 2 tests out of 3 (66.6667%)

and (ANB): 2 tests out of 3 (66.6667%)
refi (module): 118 tests out of 128 (92.1875%)

DFF6 (module); 11 tests out of 12 (91.6667%)
ctl y[0] (LATCHM): 3 tests out of 4 (75%)

DFF1 (module): 11 tests out of 12 (91.6667%)
ctl_y[0] (LATCHM): 3 tests out of 4 (75%)

DFF5 (module): 11 tests out of 12 (91.6667%)
ctl_y(0] (LATCHM): 3 tests out of 4 (75%)

DFFO (module): 9 tests out of 12 (75%)
ctl y[0] (LATCHM): 3 tests out of 4 (75%)
data_y(0] (LATCHM): 2 tests out of 4 (50%)

DFF4 (module): 11 tests out of 12 (91.6667%)
ctl_y[0] (LATCHM): 3 tests out of 4 (75%)

DFF2 (m-wule) : 11 tests out of 12 (91.6667%)
ctl_y [0] (LATCHM) : 3 tests out of 4 (75%)

DFF3 (module): 11 tests out of 12 (91.6667%)
ctl y[0] (LATCHM): 3 tests out of 4 (75%)

DFF7 (module): 11 tests out of 12 (91.6667%)
ctl y(O] (LATCHM): 3 tests out of 4 (75%)

ref2 (module): 120 tests out of 128 (93.75%)
DFF10 (module): 11 tests out of 12 (91.6667%)

ctly .) (LATCHM) : 3 tests out of 4 (75%)
DFF9 (module): 11 tests out of 12 (91.6667%)

ctl_y[0] (LATCHM): 3 tests out of 4 (75%)
DFF13 (module): 11 tests out of 12 (91.6667%)

ctljy[0] (LATCHM): 3 tests out of 4 (75%)
DFF8 (module): 11 tests out of 12 (91.6667%)

ctl y[0] (LATCHM): 3 tests out of 4 (75%)
DFF12 (modul"): 11 tests out of 12 (91.6667%)

ctl_y[O] (LATCHM): 3 tests out of 4 (75%)
DFF14 (module): 11 tests out of 12 (91.6667%)

ctl y[0] (LATCHM): 3 tests out of 4 (75%)
DFF11 (module): 11 tests out of 12 (91.6667%)

ctly[0] (LATCHM): 3 tests out of 4 (75%)
DFF15 (module): 11 tests out of 12 (91.6667%)

ctl-y[o] (LATCHM): 3 tests out of 4 (75%)
load (module): 2 tests out of 4 (50%)

idatala b[0] (LATCHM): 2 tests Out of 4 (50%)
tlatch32 (module): 683 tests out of 706 (96.7422%)

TLATCHL1 (module): 342 tests out of 353 (96.8839%)
a (NOR): 2 tests Out of 3 (66.6667%)
ca (LATC{M) : 2 tests out of 4 (50%)
cb (LATCm): 2 tests out cf 4 (50%)
cf (LATCHM): 2 tests out of 4 (50%)
cs (LATCHM): 2 tests out of 4 (50%)
ld_y[0] (LATCHM): 2 tests out of 4 (50%)

T 0(module) : 341 tests out of 353 (96.6006%)

a (NOR): 2 tests Out of 3 (66.6667%)
ca (LATCM): tests out cf 4 (50%)
cb (LATCM): 2 tests out of 4 (50%)

cf (LATCHM): 2 tests out of 4 (50%)

Figure 3.19 Fault Coverage Information Obtainable
from using ANALYZE Command

90



coverage, to determine the maximum fault coverage obtainable

for the design without DFT features. Once the test run

reached a stage where additional test vectors were producing

no increase in fault coverage the program was halted and the

coverage obtained was examined using the ANALYZE command.

Table IV presents the fault coverage results for BASICCHIP

design in terms of its individual modules. Also included is

the number of test vectors needed to achieve the fault

coverage listed. The results listed for $dummy come from a

dummy module that the ATG process creates to contain artifi-

cial/dummy constructs used during the evaluation of certain

types of Genesil blocks [Ref. 19:p. E-5]. These dummy

constructs are needed to account for differences between the

models generated by the Genesil simulator and the additional

internal nodes created by the mapping of these models into the

primitives used by Genesil during the ATG process. Therefore,

the $dummy results need to be included and considered when

evaluating the fault coverage of a complete, top-level design.

As can be seen from Table IV, the modules with the lowest

fault coverage were the combiner, input pad and $dummy modules.

Since the $dummy module is based on a mapping of the simula-

tion models for Genesil blocks to the primitives used by ATG,

there is no way to identify how to improve this module's fault

coverage without changing the components of the circuit

design. Similarly, the fault coverage for the input pad

modules is a function of the pad specifications and was not

91



TABLE IV
ATG FAULT COVERAGE RESULTS FOR BASICCHIP DESIGN

Module Faults Tested Fault Coverage %

adder 146 of 155 94.1935

combiner 160 of 192 83.3333

data-in 240 of 259 92.6641

mask-in 240 of 259 92.6641

output 15 of 15 100.0000

ref in 240 of 259 92.6641

xnorreg 112 of 112 100.0000

input pads (all) 46 of 88 52.2727

output pads (all) 20 of 20 100.0000

$dummy 8 of 44 18.1818

BASICCHIP Total 1227 OF 1403 87.4555

Total test vectors used: 530

92



observed to change unless the type of input pads utilized was

changed.

For the combiner module the ANALYZE command was selected

and this module was looked at down to the gate level to try

and determine which gates were not being completely tested.

Based on this examination it was found that each of the four

identical combiner module sections, used to convert a 4-bit

wide slice of results coming form the xnorreg module output to

a 3-bit number representing the sum of correlated bits, had

the same gates with faults not tested. These are the gates

labeled ORO, OR1, XOR4, XOR5, AND4 and AND5 in Figure 3.4.

Knowing which gates were not being completely tested, a

decision could be intelligently made about where to place a

scan path to help increase fault coverage for the combiner

module. As previously discussed, the DFTCHIP design was made

by inserting a scan path made from testablilty latches in

between portions of the original combiner module. As shown in

Figure 3.5, the insertion location of the scan path in the

combiner module was just prior to the incompletely tested

gates along the direction of circuit propagation. It was

hoped that by being able to scan in specific test vector

sequences the ATG process would now be able to fault test some

of the previously untested gates.

The ATG feature was then used to determine the fault

coverage possible for the DFTCHIP design. The results for

the ATG test run, obtained using the ANALYZE command as per

93



Figure 3.19, are shown in Table V. As indicated, the inclu-

sion of the scan path had a positive effect in several areas.

First, the fault coverage for those gates not completely

tested in the combiner module of the BASICCHIP design went

up. The DFTCHIP design was now able to test for faults oo

all of the gates from the combinerl module and 92.5 percent of

the gates from the combiner2 module. Since the sum of these

two modules contains the same exact gates found originally in

the combiner module of the BASICCHIP design, the result of

including the scan path was to increase the fault coverage for

the total combiner gates from 83.3333 per ent to 96.8750

percent. Next, the scan path was able to raise the fault

coverage for both the adder module (which is downstream in

terms of circuit propagation from the scan path) and the

$dummy module to 100 percent. Most importantly, the overall

fault coverage of the complete chip was raised from 87.4555

percent in the BASICCHIP design to 93.7295 percent in the

DFTCHIP design. Finally, the inclusion of the scan path not

only raised the fault coverages obtainable but also lowered

the number of test vectors needed to obtain the maximum fault

coverage. It took 530 test vectors to obtain the maximum

possible fault coverage for the BASICCHIP design but only 363

test vectors for the DFTCHIP design.

Based on these results, the inclusion of the scan path had

a considerable effect on the testability of the correlator

chip. Due to the decreased number of test vectors needed to

94



TABLE V
ATG FAULT COVERAGE RESULTS FOR DFTCHIP DESIGN

Module Faults Tested Fault Coverage %

adder 155 of 155 100.0000

combinerl 112 of 112 100.0000

combiner2 74 of 80 92.5000

combiners 1 and 2 186 of 192 96.8750

data-in 240 of 259 92.6641

mask-in 240 of 259 92.6641

output 15 of 15 100.0000

ref in 240 of 259 92.6641

tlatch32 683 of 706 96.7422

xnorreg 112 of 112 100.0000

input pads (all) 56 of 104 53.8462

output pads (all) 24 of 24 100.0000

$dummy 52 of 52 100.0000

DFTCHIP Total 2003 of 2137 93.7295

Total test vectors used: 363

95



obtain maximum possible fault coverage, the time used for

testing of the DFTCHIP after fabrication should be minimized.

Perhaps more importantly, the increase in the overall fault

coverage should lower the defect level found among chips that

successfully pass the testing process. Using equation (1.7)

as a basis for determining defect level, Figure 3.20 shows a

plot of the defect levels for varying yields using the maximum

fault coverage percentages of the BASICCHIP and DFTCHIP

designs. This shows graphically the gain, in terms of lower

defect levels for the same yield, obtained from including a

scan path in the design.

It should be noted that there are also two main penalties

incurred by including the scan path which are representable of

the effects of including a DFT structure into any design.

First, the scan path itself introduces gates into the design

which then have to be fault tested. The difference between

the BASICCHIP design and the DFTCHIP design was the inclu-

sion of gates resulting in an additional 734 faults to test.

For the correlator chip design this was over a 50 percent

increase. A more complex design would have a smaller percent-

age increase for a scan path with the same number of test-

ability latches but it could still be significant. A more

complex design might also need more testability latches to

produce a scan path able to raise fault coverage to a desired

level. Secondly, the inclusion of a DFT feature like a scan

path incurs a size penalty for the chip layout due to the

96



30

25

20

HBASICCHIP

Fault Coverage = 87.4555%

U
4)
144 10

5-

DFT CHIP

Fault Coverage = 93.7295%
0 1 1

0 20 40 60 80 100

Yield (%)

Figure 3.20 Defect Level versus Yield Using Maximum
Fault Coverages of the DFTCHIP and BASICCHIP Designs

97



additional gates needed. Since the BASICCHIP design was not

optimized for size the same way the DFTCHIP design was, no

direct comparison can be made for these two cases. However,

the size increase will be related to the number of additional

gates used to include a DFT feature. Therefore, within an

order of magnitude, the percentage increase in gates should be

related to the percentage increase in total chip size.

Additional penalties which might be experienced for including

a DFT feature like a scan path include additional power

consumption and possible lower limits on maximum clock speed.

The final use of the ATG feature was to look at the fault

coverage levels obtainable from the test vectors used to check

the functionality of the DFTCHIP desigo. Each of the MASM

test vector files produced during the simulation process using

the four high level check fuoctions (testparallelin,

test serialin, test_force, and test-scanclock) were fault

graded using the ATG feature. Table VI shows these results.

The results show that test vectors which are used to check the

proper logic or functionality operation of a chip may not be

very good for insuring a high degree of fault coverage. This

demonstrates the need to test a chip using test vector sets

which both look at the functionality issue and those which

provide the maximum possible degree of fault coverage.

98



TABLE VI
ATG FAULT COVERAGE RESULTS FOR DFTCHIP USING

CHECK FUNCTION PRODUCED TEST VECTOR SETS

Check Functions Faults Tested Fault coverage %

testparallelin 848 of 2137 39.6818

test serial in 929 of 2137 43.4722

test-force 725 of 2137 33.9261

test scan clock 408 of 2137 19.0922

99



IV. FABRICATION AND TESTING

Once a Genesil chip design has been completed (including

all aspects of floorplanning, simulation testing, timing

analysis, ATG processing and final compilation) it is ready to

be sent for fabrication. This chapter first examines the

steps taken to have the DFTCHIP design fabricated through the

MOSIS Service. Upon completion of fabrication, chips need to

be tested to both validate that no functional errors exist in

the design and that no manufacturing errors occurred during

the fabrication. The second section of this chapter provides

details on the test gear and testing process used to conduct

this testing on fabricated copies of the DFTCHIP design.

A. FABRICATION METHODOLOGY

The DFTCHIP design produced for this thesis was fabricat-

ed through use of the MOSIS Service. MOSIS stands for MOS

Implementation System and the MOSIS Service provides fabrica-

tion services to university classes, government agencies and

government contractors under sponsorship of the Defense

Advanced Research Projects Agency (DARPA) and the National

Science Foundation (NSF) [Ref. 20:p. 3]. The MOSIS Service

provides an inexpensive means of fabrication for standard cell

and full-custom VLSI designs using 3.0, 2.0, 1.6 and 1.2

micron double metal CMOS technologies [Ref. 20:p. 1].

Multiple fabrication line vendors are utilized to manufacture

100



designs, and costs are kept down for MOSIS users by combining

projects from several users onto a single wafer during

fabrication runs [Ref. 20:p. 1]. Instead of paying between

$50,000 and $80,000 for a complete wafer lot to be produced,

users pay for only that percentage of the silicon space on the

wafer that their designs occupy resulting in chips which can

be fabricated for as little as $400 [Ref. 20:p 1].

Actual charges for chip fabrication depend on which of the

four MOSIS size categories the chip falls into. The four

MOSIS size categories and the maximum sizes allowed for them

are: tiny (2.3mm by 3.4mm), small (4.6mm by 6.8mm), medium

(6.9mm by 6.8mm) and large (7.9mm by 9.2mm). As previously

discussed, the DFTCHIP design was limited to fitting within

the MOSIS small size category due to budget constraiits.

For Genesil designed chips being sent to MOSIS for

fabrication there are 'wo steps which must be taken prior to

final compilation that differ from normal Genesil design

practices. The first step involves the placement of pads for

the chip during the pinout process of floorplanning. MOSIS

highly recommends that designs should have the same number of

pads located on all four sides of the cavity well, and that

along each side the pads should be spaced approximately the

same distance apart. This placement configuration may be

slightly stricter than that encountered for designs not being

fabricated through MOSIS. MOSIS requires this type of

placement to insure that the bonding wires to the pads will

101



-ot be excessively long, cross, or be at too great a bonding

angle. Secondly, a Genesil chip design sent to MOSIS should

have the NOPACKAGE option chosen for it in Genesil vice

choosing a package type and attaching the bonding wires during

pinout as is normally done.

MOSIS will have all chips submitted for fabrication

packaged and will provide a bonding diagram with the fabricat-

ed chips. The package type used by MOSIS depends on the

number of pins the submitted chip design has. Dual In-line

Packages (DIP) are used for 28; 40, or 64 pin designs, and Pin

Grid Array (PGA) packages are used for 84, 108, or 132 pin

designs [Ref. 20:p. 57]. Additional information on MOSIS pad

placement requirements and packaging practices is contained in

Chapter 9 of Reference 20.

Once a Genesil design has been completed there are several

additional tasks which need to be accomplished before submit-

ting the design to MOSIS f r fabrication. First, an account

must be established with MOSIS to pay for the fabrication

services. Universities which teach VLSI design may apply for

government sponsored funding of their VLSI design projects

(Ref. 20:p. 12]. This funding method was used for the

DFT_CHIP design with funding being obtained via the NSF.

Secondly, the MOSIS fabrication schedule must be checked

to find a fabrication run being done using a fabrication line

technology available in Genesil. MOSIS fabrication runs occur

approximately every two weeks with runs alternating between

102



3.0 and 2.0 micron feature sizes and p-well and n-well

technologies. MOSIS has 1.6 and 1.2 micron feature size runs

on-demand as enough projects to fill the runs are received.

Genesil offers over 20 different combinations of fabrica-

tion line vendors, feature sizes (ranging from 1.0 to 3.0

micron), and n-well or p-well process to choose from. A match

must be made between a vendor, feature size and process type

of a fabrication run scheduled by MOSIS and the same combina-

tion from among the Genesil choices. Since the MOSIS fabrica-

tion schedule does not list the fabrication line vendor which

will produce a run, a phone call must be made to MOSIS to

obtain this information.

Having determined a match between a technology combination

available in Genesil and also scheduled by MOSIS, the Genesil

design must be completely recompiled in the chosen fabrication

line technology if a different technology was previously

specified. It should be noted that this can have an effect on

the size and operating speed of a design so ideally a match

should be determined early in the design process. Doing so

will avoid the need to review the chip parameters once a chip

design is completed. If a change must be made for the

fabrication line technology, the only penalty within Genesil

is the several hours of CPU time needed to completely recom-

pile the chip. No other changes are needed within Genesil to

change from one fabrication line technology to another. The

compiled design layout produced by Genesil will utilize the

103



specific design rules for the fabrication vendor of the

fabrication line technology chosen.

Upon completion of these steps the Genesil design must be

exported from the Genesil system into a file which can be sent

to MOSIS. To export a Genesil design the following steps need

to be taken from within the Genesil operating environment.

1. Select the chip to be exported as the current object and
return to the Genesil main menu.

2. Select TOOLING and then TAPEOUT from the Genesil menus.

3. Select SIZING or NO SIZING. SIZING produces foundry
customized data based on the design rules of the
fabrication line foundry specified while NO SIZING
produces a generic type layout [Ref. 15:p. 11.18]. Not
all fabrication line vendors utilize sized layouts.
Since the present documentation does not provide
information on which fabrication line technologies need
to be sized, a phone call to the Genesil Silicon
Compiler Corporation may be needed.

4. Choose CIF (Caltech Interchange Format) as the file
format to be used to specify the layout. Genesil also
offers GDSII (Calma Corporation GDSII Stream Format) but
MOSIS requires submissions be done using the CIF format.

5. Specify the filename for the CIF file. Genesil will
then create the CIF file within the Genesil environment
as either a type HCF file (for unsized CIF) or a type
CIF file (for sized CIF).

6. Export the file from the Genesil environment by select-
ing ANCILLIARY FILE, EXPORT FILE, choosing the file to
export, and providing a filename to which the exported
file will be written.

These steps will result in a CIF file of the chip design being

exported to the UNIX directory from which Genesil was started.

The final step to be taken before submitting the design is

to run the CIF file through the MOSIS CIFCHECKSUM program

which can be obtained from MOSIS in "generic" C source code

104



format. The purpose of the CIFCHECKSUM program is to compute

a checksum for the CIF file to help insure the accuracy of

transmission process used to send the file to MOSIS. Due to

the large size of CIF files (918K for the DFTCHIP design) and

the catastrophic result of errors, MOSIS requires that the

checksum value be computed and provided along with all design

submissions.

All interaction with MOSIS is normally done using elec-

tronic mail via the INTERNET computer network. Electronic

mail correspondence to MOSIS must be done using formatted

messages. This includes requests for information, identifica-

tion of project information, submission of CIF files and

requests for project status. Chapters 4 and 13 of Reference

20 give specifics on the means and message formats which must

be used during communications with MOSIS.

Genesil produced chips have layouts based on specific

fabrication line design rules vice the MOSIS scalable design

rules. The project information message must indicate that

specific fabrication line design rules were used by stating

the fabrication line technology chosen (VTISCI for the

DFTCHIP which used a VLSI Technologies, Inc. fabrication

line) on the TECHNOLOGY line of the message. This information

should also be noted by including a statement in the ATTENTION

field that the chip was produced using fabrication line

specific design rules.

105



To fabricate the DFTCHIP design through MOSIS, all the

steps discussed in this subsection were followed. Based on

the MOSIS fabrication schedule, the VTI-CN20A 2.Oum n-well

process from VLSI Technology, Inc. was chosen as the fabrica-

tion line technology for the chip. Based on this choice, the

key parameters listing developed by Genesil for the DFTCHIP

design is shown in Figure 4.1. MOSIS was able to fabricate

and return the DFTCHIP design within eight weeks of the

original design submission. The cost of chip fabrication was

$2200 for 12 copies of the chip. Figure 4.2 is a reproduction

of a picture taken by MOSIS of the actual chip which was

fabricated.

B. TESTING METHODOLOGY

The final step undertaken in the development process for

this thesis was the physical testing of the chips which were

fabricated via MOSIS. Only by actually applying signals to a

chip and observing its outputs can the functionality require-

ments and fabricated implementation of the design be finally

validated. During the testing process, test vector sets were

applied to the fabricated DFT_CHIP design to both verify the

operational functionality of the chips and to check for

improper chip operation which could have originated from

errors during the fabrication process. Testing for operation-

al functionality was used to validate the Genesil simulation

results previously obtained for the chip. Testing for any

manufacturing errors which occurred during fabrication was

106



Key Parameters for Chip -genpooler/pooler/DFTCHIP
.... ... .... ... .... ... .... ... .... ....- ;------

TIME - Thu Jun 7 17:39:59 1990

ROUTEVERSION - 87.20
HEIGHT - 260.9 MILS

( - 6626.85 u )
WIDTH - 179.1 MILS

( - 4549.14 u )
ROUTED - I (0-NO,1-YES)
TOTALWIRE LENGTH - 83352 MILS

( - 2117140. u
COREAREA - 24749.0 SQUAREMILS

( - 15967065. u2 )
PADRING AREA - 21981.0 SQUARE MILS

( - 14181262. u2 )
PAD AREA - 17934.7 SQUAREMILS

- 11570750. u2 )
ROUTEAREA - 12936.0 SQUAREMILS

(- 8345789.9 u2 )
PERCENTROUTING OF CORE - 52 %
PERCENTROUTING OF CHIP - 27 %
PERCENTCORE OFCHIP - 52 %
PERCENT_PADRINGOF CHIP - 47 %
PERCENTPADOFPADRING = 81 %

NETLISTVERSION - 1.0
NETLISTEXISTS - 1 (0-NO,1-YES)

PHASEA_TIME - 113.0 NANOSECONDS
PHASE_B_TIME - 40.0 NANOSECOIDS
SYMMETRIC TIME - 225.9 NANOSECONDS
NUMBER OFTRANSISTORS - 5045
POWERDISSIPATION - 79.04 MILLIWATTS *5V 10M-Z

ROUTEESTIMATELVL - 0
FLATROUTE - 0 (0-NO,1-YES)
TECHNOLOGY NAME - CMOS -1
PACKAGESPECIFIED - 1 (0-N0,1-YES)
PACKAGE_NAME = NO PACKAGE
FABLINENAME - VTI CN20A
COMPILER '7YPE = GCX

FLOORPLANVERSION - 7.1
BOND PAD CNT - 40
HEIGHT_ESTIMATE - 216.E9 MILS

( - 5509.006 u )
WIDTHESTIMATE - 174.04 MILS

( - 4420.615 u )
FUSED - 1 (0-NO,I-YES)
FUSIONREQUIRED = 1 (0=NO,I=YES)
PINOUT - I (0-110,1-YES)
PIHOUTREQUIRED - 1 (0-110,1-YES)
PLACED - 1 (0-110,1-YES)
PLACEMENTREQUIRED - 1 (0-NO,1-YES)

DOWN BONDSALLOWED - 1 (0-NO,I-YES)
PKG-P:N COUNT - 40
OBJECT TYPE - Chip
AREA PER TRANSISTOR - 9.262081 SQUAREMILS

(-- 5975.52438 U2 )
PHYSICAL IMPLEMENTATIONSEXIST = 0 (0=NO,I=YES)
CHECKPOTITS EXIST - 0 (0-N',I-YES/
CAN SET FABLIN-E - 1 (0-110,i-YES)

Figure 4.1 Keyparameters Listing for DFT CHIP

Design Submitted for Fabrication

107



Figure 4.2 View of Fabricated DFTCHIP

108



accomplished by applying the maximum fault coverage test vec-

tor set produced by the Genesil ATG process. Finally, testing

was done on the chips to try and determine the maximum clock

speeds which could be used for the fabricated DFTCHIP design.

1. Testing Methodology for the DFTCHIP Design

This subsection deals with the methodology used during

the testing of the fabricated chips from the DFTCHIP design.

However, the approach taken and steps used is applicable to

almost any other chip design produced using Genesil. The

actual test facilities and test gear used to accomplish

testing of the fabricated DFT_CHIP design chips involved usage

of a commercial level chip tester, the Textronix Digital

Analysis System (DAS) 9100, and its associated personal

computer (PC) controller software.

The DAS 9100 is a commercial level tester which has

numerous options for performing selected pattern generation

and data acquisition functions and can be used in a stand-

alone mode to accomplish chip testing. DAS 9100 Pattern

Generation modules are used to apply input signal patterns to

the device under test (DUT). DAS 9100 Data Acquisition

modules are used to acquire the output results form the DUT

and to monitor the input patterns supplied by the Pattern

Generation modules.

Since testing on the DFTCHIP was not done using thc

DAS 9100 in a stand-alone mode, its use in this manner will

not be discussed here. Instead, the DAS 9100 documentation of

109



Reference 21 and Reference 22 should be reviewed for informa-

tion concerning the configurations, capabilities, usage and

setup of the DAS 9100 in a stand-alone mode. Additionally

Chapter III of Reference 23 should be read to gain information

on usage of the DAS 9100 configuration available at the Naval

Postgraduate School (NPS).

Testing of the DFTCHIP design was done exclusively by

using the DAS 9100 in conjunction with its PC controller based

9100 Device Verification Software (91DVS). The advantage of

performing testing in this method vice using the DAS 9100 in

a stand-alone mode is the ease of use and speed of configura-

tion setup possible for performing testing on the DAS 9100.

Through use of a menu driven interface, the 91DVS software

allows the user to send setup commands to the DAS 9100, apply

test sequences to run tests, compare acquired test results

against expected results and view the applied test patterns

and acquired test results outputs along with the expected

results on a screen display [Ref. 24 :p. 1-1]. 91DVS can be

run on any AT or XT configuration PC with DOS 3.0 or higher,

and the PC is linked to the DAS 9100 via use of a GPIB

interface card which controls a high-speed data link

[Ref. 24:p. 1-1]. Figure 4.3 shows a functional block diagram

of the NPS configuration for the test system utilizing the

91DVS software with the DAS 9100 tester.

The 91DVS software contains two software program

choices for installation: DVS25 and DVS50. Based on the use

110



Personal Computer (AT/XT)

91DVS Software

GPIB Interface Card

DAS 9100 Tester

91A32 Data 91S16 and 91S32

Acquisition Pattern Generation
Module Modules

Device Under Test

Figure 4.3 Functional Block Diagram of Integrated
91DVS and DAS 9100 Test System

111



of 91S16 and 91S32 Pattern Generator modules for the DAS 9100

configuration at the NPS, the DVS50 software program is

presently installed on the controller PC. Use of the DVS50

software requires that the clock rates for the pattern

generator and data acquisition modules of the DAS 9100 be the

same [Ref. 24:p. 1-3]. Since the DAS 9100 configuration at

the NPS uses a 91A32 Data Acquisition module with a 25 MHz

maximum clock rate, this limits the maximum clock speed of the

pattern generator modules to this same rate. The additional

DVS50 requirement that data acquisition modules be clocked

from the output of a pattern generator module limits the

present NPS DAS 9100 configuration of pattern generator and

data acquisition modules to 31 data acquisition channels and

47 pattern generation channels [Ref. 23:p. 73].

To use the DVS50 software to run a test two user

supplied files must be available on the PC: the ".src" file

and the ".das" file. The ".src" file is used by the DVS50

software to generate the configuration setup information used

by the DAS 9100 during the test run. The ".das" test pattern

file contains the sequence of input signal test vectors which

will be applied to the DUT. An additional file which can be

used with the DVS50 software is the ".sim" file. It contains

the sequence of test vector inputs together with the expected

output signal results and is used to compare actual test

results against the expected results. The ".src", ".das", and

".sim" files must all be generated prior to initiating use of

112



the DVS50 program. Chapter 5 of Reference 24 contains

specifications for the required formats of these files.

The MASM test vector files generated by the simulator

and ATG processes in Genesil are not in the format of the

".das" and ".sim" files used by the DVS50 program. Addition-

ally, the ".src" file must be generated at least once for each

fabricated Genesil design which will be tested. To simplify

the process of creating the files required by the DVS50

program, a conversion program, convert.c, was written in C to

translate Genesil MASM test vector files to the ".das" and

".sim" formats. Additionally, if generation of a ".src" file

is requested the conversion program will query the user on the

needed information to produce a ".src" file. The source code

for convert.c is contained in Appendix D. Both the source

code and the executable program, convert.exe, are contained in

the C:\DVSTEST subdirectory of the PC which has the DVS50

program installed on it.

To produce the user files required by the DVS50

program the Genesil MASM test vector files must first be

exported from Genesil to a UNIX directory and then be trans-

ferred to the C:\DVSTEST subdirectory of the PC by using the

KERMIT file transfer procedure. The conversion program can

then be run. To obtain instructions on the use of the

conversion program just enter the command "convert" from the

C:\DVSTEST subdirectory.

113



An example of the ".src" file which can be produced

using the conversion program is shown in Figure 4.4. Each pin

on the DUT, as identified by name and pin number, shows

whether a pattern generation (PAT) channel, data acquisition

(ACQ) channel, or both will be attached to it. Additionally,

the power supply pins have the label PS identified with them.

The ".src" file also contains the details on the pattern

generator module clocking rate (TIMEDEF information), pin

threshold level (THRESHOLD information) and power supply pin

definitions (PSDEF information) used by the DVS50 program to

establish the proper setup information for the DAS 9100.

Examples of the ".das" and ".sim" files are provided

in Figure 4.5 and Figure 4.6. They are nearly the same except

that the ".sim" file contains the names and expected output

sequence results for each output signal as well as the input

signal names and test vectors. The ".das" file contains only

the input signal names and test vector information.

Once ".src", ".das" and ".sim" files have been created

through use of the conversion program testing on a chip via

use of the DVS50 software can commence. Reference 23 contains

a detailed tutorial on the use of this software. The follow-

ing steps used to test the fabricated chips from the DFTCHIP

design illustrate the testing process.

1. Start the DVS50 program by typing DVS50 from within the
C:\DVSTEST subdirectory which contains the ".src", "das"
and ".sim" files.

2. From the DVS50 main menu choose Compile Test Program and
provide the names of the ".src" and ".das" files. The

114



PROGRAM DFTCHIP;
PINDEF;
CLOCK2 20, PAT, ACQ;
CLOCK SYS 13, PAT, ACQ;
DATCON 26, PAT, ACQ;
INPADS15 32, PAT, ACQ;
INPADS14 33, PAT, ACQ;
IN PADS13 34, PAT, ACQ;
INPADS12 35, PAT, ACQ;
IN PADS11 36, PAT, ACQ;
INPADS10 37, PAT, ACQ;
IN PADS9 38, PAT, ACQ;
1i PADS8 39, PAT, ACQ;
IN PADS7 40, PAT, ACQ;
INPADS6 1, PAT, ACQ;
IN PADS5 2, PAT, ACQ;
INPADS4 3, PAT, ACQ;
IN PADS3 4, PAT, ACQ;
IN PADS2 5, PAT, ACQ;
INPADS1 6, PAT, ACQ;
IN PADSO 7, PAT, ACQ;
LOAD 24, PAT, ACQ;
M2 23, PAT;
M1 22, PAT;
MSKCON 27, PAT, ACQ;
OUTCON 19, PAT;
REFCON 25, PAT, ACQ;
SERIAL IN 31, PAT, ACQ;
SPCON 28, PAT, ACQ;
TESTIN 8, PAT, ACQ;
OUT PADS4 18, ACQ;
OUT PADS3 17, ACQ;
OUT PADS2 16, ACQ;
OUTPADS1 15, ACQ;
OUT PADSO 14, ACQ;
SHIFTOUT 21, ACQ;
VDD CORE 9, PS I;
VDDRING 10, PS 1;
VDD CLOCK 11, PS 1;
VSSCLOCK 12, PS 2;
VSS RING 29, PS 2;
VSSCORE 30, PS 2;
END;
TIMEDEF;
PAT : ns 100;

ENTD;
THRESHOLD;
ACQ : TT,;
END;
PSDEF;
1 mV 5000, mA 3000;
2 mV 0;
END;
BEGIN;
END $

Figure 4.4 ".src" File Format

115



DFTCHIP
1
1

28
CLOCK2
CLOCKSYS
DATCON
IN PADS15
IN PADS14
INPADS13
INPADS12
IN PADS11
IN PADS10
IN PADS9
iN-PADS8
INPADS7
IN PADS6
INPADS5
IN PADS4

IN PADS3
IN PADS2

IN PADS 1
IN PADSO
LOAD
M2
Mi
MSKCON
OUTCON
REFCON
SERIAL IN

SPCON
TESTIN
1101011101001111000101001000

0010111010111100111110101000
1111001010110111010111111101
0001i11101001111110000001101

1110001101111100010110000110
0001101010000010011000110011
1110101101101001101001011101

G010011110000110011101111100

1111010010000100110000110000
0011100001111001100100010101

110000000011111i010111110000
0011111001011001100100110000
1110100111101010000100000001

0000110000001110101101111000
1110010000010011110011U11110
0000011111100010100110111111
1110011010110001000111100010

0000011111000110111100110001
1100100111011011001100001000

0010000000110110010101111011
110100011110010001000010O300
0011011010111011110100011110
110100011101010110000100101
0011000001110010011000001001

1110000110001000110000010011

0011111111001110111000111110
1100011011010011100001i01010

Figure 4.5 ".das" File Format

116



DFTCHI P
I
1
34
CLOCK2

CLOCK-SYS
DATCON
INPADS15
INPADS14
INPADS13
INPADS12
INPADS11
IN_-PADS10
INPADS9
INPADS8
INPADS?
INPADS6
INPADS5
INPADS4
INPADS3
INPADS2
IN PADSI
IN7PArDso

LOAD
M2
M1
MSKCOX
OUTCON
REFCON
SERIALIN
SPCON
TEST IN'
OUTPADS4
OUTPAIJS3
OUTPADS2
OUTPADS1
OUT PADSO
SHii TOUT
1101011101001111000101001000..
O01011101011110021110101000 ..
111100101011011101011111110100000.
O 0011111010 011 11110 000 0011010 0000.
1110001101111100010110000110000000
00 0110 10100000 100 11000 1100110 0000 0
1110101101101001101001011101010111
00 100111100001100111011111000 101 1
11110 100 100 00 100110 000110000101110
0011100001111001100 100010 1011011 10
11000000001111111010111110000000000

0011111001011001100100110000000000
111010011110 1010000 0000001000 10 1
0 000 1100 000011101011011110 00000 10
1110010 00010 011110 01101111010 100 1
00 00 0111111000 1010011011111110100 1

1110011010110001000111100010001011
0 000 0 1111000 110 1111011000 100 1 011
11 001001110 110 1100110000 10 00000 110
0010000000110110010101111011000110

1101000111100100010000100000010100

dots (.) mean undetermined
(i.e., not yet initialized)

Figure 4.6 ".sim" File Format

117



DVS50 program will use these files to produce the binary
information files used to setup and control the DAS 9100
during the test run. Additionally, the Channel Specifi-
cation List, which indicates how to connect the DAS 9100
probes to the DUT, is produced.

3. Return to the main DVS50 menus and Choose Information.
From the Information menu select Printing to toggle the
information output location to send information to the
printer vice the screen. Next select List Channel
Specification from the Information menu. This will
cause a copy of the Channel Specification List to be
printed out. This step needs to be done only for the
first test on a chip design or if anything as been
changed in the ".src" for subsequent tests.

4. Using the information from the Channel Specification
List insert the DUT in the test jig and connect the DAS
9100 probes and power supply connectors. Figure 4.7 is
an example of the Channel Specification List information
used to connect up the DUT. Changes to the probe
connections for subsequent tests and additional chips
only needs to be done if the ".src" file PAT or ACQ
channel information has been changed.

5. Reenter the DVS50 man menu and choose Enter Test Menu
followed by Run Test to commence the test run. Ensure
that the DAS 9100 has its power turned on and has
completed its startup self-checks. When prompted by the
DVS50 program turn on the power to the test jig for the
DUT. The DVS50 program will then download the configu-
ration setup and test vector pattern information to the
DAS 9100. The DAS 9100 will run the test using this
information and upload the results from the data
acquisition channels to the PC. The test results are
stored on the PC by the DVS50 software in a file with
the extension name of ".AO1". Upon completion of the
test turn off the power suppiy to the test jig and
reenter the main DVS50 menu.

6. To display the test results on the PC's screen select
Display Test Results and provide the filenames of the
".AO1" and ".sim" files. The DVS50 program will display
the test results in timing diagram format with the
".AO1" file actual test result information and ".sim"
file expected test result information overlaid on each
other in different colors for easy comparison. The
screen display window can then be expanded, compressed,
or moved through in a left or right direction using the
PC function keys. The screen display window can display
information on up to 24 signals at a time. Initially
the display will show the alphabetically first 24 input

118



9100 Device Verification Software - Version DVS50-2.31.*t.**** **** ~ttt****.*t*.*tt ***

Listing generated: ** 06/14/1990 ** 13:23:47

Test Program in Use DFTCHIP

*** CHANNEL SPECIFICATION LIST *'*

ATTENTION Connect the DAS-PODs to the pins of the DUT
according to the following list.
Take care - incorrect connections may cause
permanent damage to the DAS-PODs or the DOUT I

* Trigger channel(s): PG-POD ACQ-POD *

* IB-STB-1 5D7-1 *

* ACQ clock channel(s): PG-POD EXTCLX-POD *

* IB-CLK-1 7C-CLKI-1 *

* NR: NAME PINNTUMBER POD(S) *

• PG ACQN ACOF other *

1 CLOCK2 20 1B7-1 5D6-1
* 2 CLOCK SYS 13 1B6-1 5D5-1 *
* 3 DATCON 26 1B5-1 5D4-1
* 4 IN PADS15 32 1B4-1 5D3-1 *
* 5 IN_PADS14 33 1B3-1 5D2-1 *

* 6 INPADS13 34 IB2-1 5D1-1 *

7 INPADS12 35 1B1-1 5D0-1
* 8 INPADS11 36 1B0-1 5C7-1 *
* 9 INPADS10 37 JA7-1 5C6-1 *
* 10 INPADS9 38 1A6-1 5C5-1
* 11 IN PADS8 39 lAS-I 5C4-1 *
* 12 INPADS7 40 1A4-1 5C3-1

* 13 IN PADSG 1 1A3-1 5C2-1
* 14 IN PADS5 2 IA2-1 5C1-1
• 15 INPADS4 3 1AI-1 5CO-1 *
* 16 INPADS3 4 IAO-1 5B7-1 *
* 17 IN PADS2 5 2D7-1 5B6-1 *

* 18 IN POSI1 6 2D6-1 5B5-1 *
* 19 IN PADSO 7 2D5-1 5B4-1
* 20 LOAD 24 2D4-1 563-1 *
* 21 M2 23 2D3-1
* 22 Mi 22 2D2-1 *

* 23 MSKCON 27 2D-1 5B2-1 *
* 24 CUTCON 19 2D0-1 *
* 25 REFCOl 25 2C7-1 5B11
* 26 SERIAL IN 31 2C6-1 5BO-1

* 27 SPCON 28 2C5-1 5A7-1
* 28 TESTIN 8 2C4-2 5A6-1
* 29 CUT PADS4 18 5A5-1 *
* 30 CUT PADS3 17 5A4-1
* 31 OUT-PADS2 16 5A3-1

3 32 OUJT PADS1 15 5A2-1
* 33 OUTPADSO 14 5AI-1
* 34 SHIFTOUT 21 5A0-I
* 35 VDD CORE 9 PSi
* 36 VDD RING 10 PSI
* 37 VDCLOCK 11 PSI
* 38 VSF CLOCK 12 PS2
* 39 VSS RING 29 PS2
* 40 VSSCORE 30 PS2

Figure 4.7 Channel Specification List Format

119



or output signals acquired during the test. To see
other signals one of the signals presently displayed
must be deleted before another signal can be inserted
for display. Chapter 4 of Reference 24 provides
specifics on user control of the DVS50 screen display.
Figure 4.8 is an example from a test on the DFTCHIP
design of the screen display format which can be
obtained for looking at test results.

Additional chips of the same design can be tested against the

same set of test vectors by merely replacing the chip located

in the test jig and then re-entering the DVS50 test menu

(i.e., start with step five above).

2. Test Results for the DFTCHIP Design

Using the steps enumerated in the previous subsection

(Testing Methodology for the DFTCHIP Design), the fabricated

copies of the DFTCHIP design were tested on the Das 9100 test

gear. Each of the 12 fabricated chips were tested for overall

manufacturing errors caused during fabrication by applying the

test vector pattern for the maximum fault coverage test vector

set obtained from the Genesil ATG process. Next, to validate

that the DFTCHIP design functionality was consistent with the

desired operational logic the chips were tested using the test

vector patterns produced from the Genesil simulation process.

Each chip was tested using the test vectors produced from the

test-parallelin, testserial in, test-force and test-scan-

clock simulation check functions.

Since the logic design for all chips is the same and

the purpose of the maximum fault coverage test vector set is

to uncover manufacturing errors, the need to test the logic

functionality of each chip in a commercial environment is not

120



dLQ-

LILW

V-=-

~,i~in kfI W I % T -- -

D-- IOOOOO 00000 Ca0''EI,

ILLU.U L I 1 CA-(L -I L)L.CL L L L CA A LCL IL I I I I I

UUCJ -- - -. - - - -.. - - - -~ ~--- 0

Figure 4.8 DVS50 Screen Display Format

121



present. Instead, if fault coverage is high, a commercial

chip design may need to have only limited chip quantities

checked for proper logic functionality. The remaining chips

would then be accepted or rejected based only on the results

obtained from testing with the maximum fault coverage test

vector set.

For the DFTCHIP design all copies of the fabricated

chip passed all tests run on them. No unexpected logic

functionality errors or manufacturing errors were observed.

The DAS 9100 test gear, as controlled using the DVS50 software

via the PC, made for a quick and easy means to conduct the

tests and compare the results against the expected values

determined by Genesil.

The final testing conducted on the fabricated chips

was that done to try and determine the maximum clock speeds at

which the two clock signals for the DFTCHIP design could be

applied. The global system and local scan path clock signals

for the chip are generated via the test vector patterns which

are applied. It takes a minimum of two consecutive test

vectors to produce a complete clock cycle for either of these

two signals. Since the DAS 9100 applies one test vector for

each complete cycle of the pattern generator clock, the

minimum time periods for the clock signals applied to the chip

were twice the period of the pattern generation clock cycle

used by the DAS 9100.

122



Using a 91A32 Data Acquisition module the DAS 9100

tester can have pattern generation clock cycle periods of

40ns, 50ns, lOOns, 200ns, 500ns, lus, 2us, 5us, 10us, 20us,

50us, 100us, 200us, 500us, lms, 2ms and 5ms. Based on this,

the maximum testable global system and local scan path clock

speeds which could be applied to the DFTCHIP design using the

DAS 9100 configuration available at the NPS were 12.5 MHz.

This same limitation would be found for any clock signal

applied to a DUT that was derived from a Genesil produced test

vector pattern.

First, the test vector sets which had both the global

system and local scan path clocks cycling at the same speeds

were applied to the chips. At clock speeds of 12.5 MHz and

10.0 MHz the chips would not produce the correct outputs. At

a clock speed of 5.0 Mhz the outputs were correct.

Next, the test vectors produced from the testscanclock

simulation function were applied. This function caused the

global system clock signal to be first applied at a frequency

half that of the local scan path clock signal and then to

remain off while the local scan path clock continued to

function. When this set of test vectors was run with the

pattern generation clock frequency set such that the global

system clock cycled at 6.25 MHz and the local scan path cycled

at 12.5 MHz the outputs were as predicted.

These results tend to verify the predictions made by

Genesil about the maximum operating frequencies for the two

123



clocks on the DFTCHIP design. The maximum operating frequen-

cy for the global system clock is at least 5.0 MHz but is less

than 10.0 MHz. The exact maximum operating frequency for the

global system could not be determined since the DAS 9100 can

only change test frequencies in set increments. However, the

chips all performed better than the apparently conservative

Genesil estimate of 4.43 MHz for the global system clock. The

local scan path clock was able to run successfully run at 12.5

MHz which verified Genesil's prediction that it would run

faster then the global system clock. Higher speeds for the

local scan path clock could not be attempted due to the

maximum operating speed constraints of the present DAS 9100

configuration. Finally, these results validated the design

objective of being able to run the local scan path clock at a

higher frequency than that of the global system clock and to

continue scan path operations during periods that the global

system clock was not operating.

124



V. CONCLUSIONS

A. SUMMARY

This thesis has both described the benefits of including

Design for Testability in a VLSI chip design and provided

information on accomplishing this using the Genesil Silicon

Compiler. Through a presentation of the methodology needed to

implement a DFT design using Genesil, fabricate the design via

MOSIS, and then test the chips on the DAS 9100 tester, a

complete chip design production and testing sequence was

illustrated.

The need for including DFT features in chip designs

becomes increasingly important as the maximum fault coverage

obtainable for more complex chips without DFT features

decreases. The need for obtaining a high degree of fault

coverage for VLSI chips was examined and a relationship

between a chip's fault coverage, defect level and yield was

developed. Both the Scan Path and Built-in Test techniques

were discussed. They both provide a reasonable means of

raising the fault coverage possible for a chip by providing

greater controllability and observability of internal chip

nodes. Whether one and/or both of these techniques should be

used is decided by incorporating an evaluation of the specific

design being produced.

125



Genesil, through its Testability Latch Blocks, provides a

simple means of incorporating DFT into a chip design. Due to

its ease of use, Genesil allows different DFT alternatives, in

terms of techniques and/or feature placement, to be evaluated

in a reasonable amount of time.

Including DFT features in a chip design can exact penal-

ties in both the chip size and in performance characteristics

such as operating speed and power consumption. Genesil

designs are especially prone to experiencing penalties in chip

size as object components are added. Proper floorplanning

techniques, to include manual placement to locate objects, is

critical in the size optimization effort for a Genesil

produced design.

Genesil's simulation and automatic test generation

features provide an integrated, easy to use means of develop-

ing test vectors which will either check the logic functional-

ity of a design or provide the maximum possible fault cover-

age. Fault grading using the ATG process illustrated that

test vector sets which provide good functional testing

information may not provide a high degree of fault coverage.

This again demonstrates that both categories of test vectors

are needed for testing purposes. Being able to use an

automated approach to developing test vectors provides a

significant time savings. Without the simulation and ATG

features of Genesil the evaluation of test vectors to be

applied to the fabricated chips, on top of all the other

126



necessary design development steps, would not have been

practical for a single person to accomplish.

Once Genesil designs are finished they are completely

compatible with fabrication via MOSIS as long as a match is

made between fabrication technologies. MOSIS provides

excellent turn-around time service at a very reasonable cost

of fabrication.

By utilizing the DVS50 software to control the DAS 9100

tester, chips fabricated from Genesil produced designs can be

conveniently tested. The conversion program to translate test

vectors from Genesil's MASM file format to the ".das" and

".sim" files used by the DVS50 software provides an easy means

of utilizing any test vectors produced during the design

process. Almost no knowledge of the DAS 9100 tester is needed

to conduct tests if the DVS50 software is used. The DAS 9100

provides an adequate means of testing fabricated chips within

the limitations of the maximum chip clock speeds which can be

obtained.

Simulation results predicted by Genesil agreed with the

results obtained during actual testing on the fabricated chip

design. The use of the scan path for the design raised the

fault coverage obtainable and lowered the number of test

vectors needed to obtain maximum fault coverage as compared to

the same design without a scan path. Obtaining expected test

results for the maximum fault coverage test vector set

indicated, to a high degree of confidence, that all the chips

127



were properly fabricated. Without the scan path feature the

degree of confidence about the absence of manufacturing

defects would have been smaller.

B. RECOMMENDATIONS

The following recommendations should be considered for

implementation or additional investigation:

1. Genesil usage is highly CPU intensive. For the present
setup of Genesil operating on the VAX a large amount of
time is wasted waiting for Genesil to complete opera-
tions during periods of medium to high computer usage by
other students. To greatly increase the speed of
producing Genesil designs, Genesil should be moved to a
platform which allows nonshared usage of a fast CPU.

2. The speed of applying test vectors on the DAS 9100 using
the DVS50 software is presently constrained due to using
a 91A32 Data Acquisition module which has its acquisi-
tion rate limited to 25 MHz. A 91A08 Data Acquisition
module, which would raise this rate to a 50 MHz limit
using the DVS50 software, should be acquired. This
would allow an effective maximum rate of 25 MHz, vice
the present 12.5 MHz, for chip clock signals generated
via Genesil produced test vector sets.

3. Investigate the use of the Built-in Test DFT technique
alone and or together with a scan path on a more complex
Genesil produced VLSI design.

4. Investigate the incorporation of integrated DFT tech-
niques and features into multiple chip VLSI designs to
enhance complete board and or system level testing.

5. Genesil designs are presently limited by the need to
utilize only Genesil library provided blocks during the
design process. Investigate the means of incorporating
optimized VLSI components, designed in a program like
MAGIC, into Genesil designs to enhance the performance
of critical chip components and to minimize overall chip
size.

128



APPENDIX A. BASIC CHECK FUNCTIONS

This Appendix contains the GENIE language source code

written for the basic building block check functions. These

chczk functions only accomplish limited simulation tasks but

may be grouped together or called from a higher level check

function to run a complete simulation test.

func MSP (args value /* Function to set the mask register
values in a parallel manner */

sn SPCON 0
sn IN PADS @value
sn MSKCON 1
ck
sn MSKCON 0I

func RSP (args value /* Function to set the reference
register values in a parallel manner */

sn SPCON 0
sn IN PADS @value
sn REFCON 1
ck
sn REFCON 0
I

func DSP {args value /* Function to set the data register
values in a parallel manner */

sn SPCON 0
sn IN PADS @value
sn DATCON 1
ck
sn DATCON 0I

func TSS {args value /*Function to serially load 32 bits via
the scanpath. Note: data is read in msb first. If
the value used is not 32 bits in length O's are read
in to the left (msb's) of the loaded value */

vars isb length valstr i
set valstr (bin @value) /* Convert value into ascii

string and assign to valstr */

129



set length (strlen @valstr) /* Determine length of
valstr's ascii string */

sn M1 0 /* Insure testability latches set up for serial
shifts*/

sn M2 0
if (@length != 33) ( /* String conversion appends an

extra 0 onto the first position of the string so
check for a length of 33 */

for (i=0; @i<(33 - @length); ++i) ( /* If value was
not 16 bits then append the necessary zeroes
to the front of the number before loading
the msb */

lsb = 0
sn TESTIN @lsb
ck
I

for (i=l; @i<@iength; ++i) { /* Start with position 1
(not 0) since the first bit in position 0 is
the extra appended 0 which occurs during
value to binary string conversion */

lsb = (ord (substr @valstr @i 1 )) /* Extract the
next msb from the string to shift in as
data. Note: this line returns the ascii
numeric value for this bit*/

lsb = (@lsb - 48) /* Convert ascii numeric value
to the value to be shifted in next */

sn TESTIN @lsb /* Assign value to be shifted in to
the input pin */

ck /* clock in value */
)

sn LOAD 0 /* Disable LOAD so forced value is not
overwritten */

sn M1 1 /* Enable force operation for testability
latches */

ck /* Cycle to force all 32 bits into shift latch
locations of testability latches */

sn M1 0 /* Return testability latches to normal shift
operation */

sn LOAD 1 /* Return chip to norral ops on next clock
cycle*/

func TS (args valuel value2 /* Function to serially load 1 to
32 test bits via the scanpath. Upon completion of
the scanpath serial load, a force operation is done
on the testability latches to cause the values in
the scanpath testability shift latches to be loaded
into the testability data latches for propagation to
the final output pins. Note: both the scan path
shift operations and normal operations are restored
upon completion. Note: data is read in msb first. If

130



the value2 used is not valuel bits in length O's are
appended to the left (msb's) of value2. If value2
has more bits than designated by value 1 then only
the first value 1 msb's are shifted into the
scanpath. */

vars lsb length valstr i
set valstr (bin @value2) /* Convert value into ascii

string and assign to valstr */
set length (strlen @valstr) /* Determine length of

valstr's string */
sn M1 0 /*insure testability latches set up for serial

shifts*/
sn M2 0
if (@length != (@valuel + 1)) { /* String conversion

appends an extra 0 onto the first position of
the string so use valuel + 1 */

for (i=0; @i<((@valuel + 1) - @length); ++i)
/* If value2 was valuel bits then append the
necessary zeroes to the front of the number
before loading the msb */

lsb = 0
sn TESTIN @lsb
ck
I

I
for (i=l; @i<@length; ++i) { /* Start with position 1

(not 0) since the first bit in position 0 is the
extra appended 0 which occurs during value to
binary string conversion */

lsb = (ord (substr @valstr @i 1 )) /* Extract the
next msb from the string to shift in as data.
Note: this line returns the ascii numeric value
for this bit*/

lsb = (@lsb - 48) /* Convert ascii numeric value
to the value to be shifted in next */

sn TESTIN @lsb /* Assign value to be shifted in to
the input pin */

ck /* clock in value */
)
forcein RB /* Force the values from the scanpath

shift latches into the testability data latches
for propagation to the output */

func SS (args shift_type valuel value2
/* General function for shifting in items serially.
Arg 1 (shift type) must be a string which specifies
the items which will be shifted in. Allowable arg 1
inputs are D (data), R (reference), M (mask), T
(test via scanpath) , DT (data and test) , RT
(reference and test), and MT (mask and test). Args 2
to 3 dre tl.-. number values which correspond to the

131



strings to be shifted in. The order of these values
must match the order of the items from arg 1. */

vars valstrl lengthl valstr2 length2 i
set valstri (bin @valuel) /* Convert value to ascii

string */
set lengthl (strlen @valstrl) /* Determine length of

string */
set valstr2 (bin @value2)
set length2 (strlen @valstr2)
sn SPCON 1 /* Set SPCON for serial inputs */
if ((@lengthl != 17) && (@valuel != null)) {

/* If string length of input value is less than 17
bits then cat zeros to the left until a full size
string is present. Note: the bin process returns a
string with an extra 0 appended to the left causing
17-bit strings to be returned for a normal 16-bit
value input. */
for (i=0; @i<(17 - @lengthl); ++i)

valstrl = (cat 0 @valstrl)
)

)
if ((@length2 != 17) && (@value2 != null)) (

for (i=0; @i<(17 - @length2); ++i)
valstr2 = (cat 0 @valstr2)
)

)
for (i=l; @i<17; ++i) { /* Loop to shift in data bits*/

if (@shifttype == "D") {
LSB D @valstrl @i /*place next msb at serial

data input */
sn DATCON 1 /* Enable data to be shifted in */
ck /* Cycle to shift in bit */
)

)
for (i=l; @i<17; ++i) ( /* Shift in reference bits */

if (@shifttype == "R")
LSB R @valstrl @i
sn REFCON 1
ck

for (i=l; @i<17; ++i) /* Shift in mask bits */
if (@shifttype == "M")

LSB M @valstrl @i
sn MSKCON 1
ck

for (i=l; @i<17; ++i) ( /* shift in test bits */
if (@shifttype == "T")

LSB T @valstrl @i
sn M1 0 /* Enable scanpath shift ops */

132



ck
I

I
for (i=l; @i<17; ++i) ( /* Shift in data and test bits */

if (@shift_type == "DT") (
LSB D @valstrl @i
sn DATCON 1
LSB T @valstr2 @i
sn M1 0
ck
)

I
for (i=l; @i<17; ++i) { /* Shift in ref and test bits */

if (@shift type == "RT") {
LSB D @valstrl @i
sn REFCON 1
LSB T @valstr2 @i
sn M1 0
ck
I

)
for (i=l; @i<17; ++i) ( /* Shift in mask and test bits */

if (@shifttype ="MT")
LSB D @valstrl @i
sn MSKCON 1
LSB T @valstr2 @i
sn Ml 0
ck
)

)
sn DATCON 0 /* Disable data inputs */
sn REFCON 0 /* Disable reference inputs */
sn MSKCON 0 /* Disable mask inputs */
sn Ml 1 /* Disable scanpath shift ops */)

func LSB {args shifttype valstr lsb i lsb
/* Function called by SS to assign the next bit of
the input value string to the serial input pin */

vars lsb
lsb = (ord (substr @valstrlsb @i lsb 1))

/* Obtain the next bit to be input as an ascii
character */

lsb = (@lsb - 48) /* Convert ascii character to a
number* /

if ((@shifttype=="D") (@shifttype=="R")
(@shift-type=="M"))
sn SERIAL IN @lsb /* Assign next bit for to be

used for the serial input */

if (@shifttype == "T") ( /* Assign bit for test
shift in* /

133



sn TESTIN @lsb
)

func force in (args force_type
/* Function to cause values which have been shifted
in via the scanpath to be forced into the
testability latch data latches. Note: once LOAD
returns to 1 the normal propagated values from the
data, ref, and mask registers reenter the data
latches on the next clock cycle. The RB option
restores both shift and normal ops, RN restores
only normal ops, and RS restores only shift ops. */

sn LOAD 0 /* Disable normal inputs to testability
latch shift latches */

sn M1 1 /* Enable force ops and disable scanpath shift
ops*/

sn M2 0
ck /* Cycle. This causes OUT PADS to have an output

based on the values shifted in via the scanpath.
Note: no outputs will be obtained until 32 bits have
been shifted into the scanpath to fill all spots
along the serial scanpath testability latch line */

if (@forcetype=="RB") (
sn M1 0 /* Restore normal shift operations */
sn LOAD 1 /* Restore ops to normal on next clock

cycle */
println "Both scan path shift ops and normal ops

restored"
)

if (@forcetype == "RN")
sn LOAD 1 /* Restore normal ops */
println "Scan path shift ops disabled, normal ops

restored"
println "Restore shift ops by setting M1 to 0"
1

if (@forcetype == "RS")
sn M1 0 /* Restore shift operations in scanpath */
println "Scan path shift ops restored, normal ops

disabled"
println "Restore normal ops by setting LOAD to 1"
)

func swapin (args swap type
/* Function to swap the data latch values with the
testability latch shift latch values. Options for
this function are RS to restore the scanpath shift
ops but keep the normal ops disabled after
completion, RN to restore the normal operations but
keep the scan path shift ops disabled, and RB to
restore both after completion. */

134



sn LOAD 0 /* Disable normal input to data latches */
sn M1 1 /* Set M1 and M2 for swap operation */
sn M2 1
ck /* Cycle circuit to perform swap operation */
if (@swap-type == "RB") {

force in RB /* A force operation must be done
immediately after the original data latch
contents move into the shift latch portion of
the testability latch */

}
if (@swap-type == "RN") (

force-in RN
)

if (@swaptype == "RS") {
force-in RS
}

I

func samplein ( /* Function to sample the data in the data
latch and place it into the shift latch portion of
the scanpath for scanpath output */

sn LOAD 1
sn M1 0
sn M2 1
ck
sn M1 0
sn M2 0
sn LOAD 1
I

func tog ( /* Function to set up toggle patterns for clocks */
toggle CLOCK 1 '(0 10 20) /* Set up toggle scheme for

CLOCK signal */
tag CLOCK cycle none /* Reset CLOCK cycle tags */
tag CLOCK cycle falling /* Tag CLOCK so that "ck"

command advances to the next rising edge of the
CLOCK signal */

tag CLOCK step both
toggle CLOCK2 0 '(5 15 25) /* Set up toggle scheme for

CLOCK2 signal */
tag CLOCK2 cycle none /* Do not base "ck" commands on

state of CLOCK2 */
tag CLOCK2 step both /* Needed to get step resolution */
}

func untog ( /* Function to untoggle clocks - must be used
before running test vectors created by the traceobj
command */

untoggle CLOCK
untoggle CLOCK2

135



APPENDIX B. HIGH LEVEL CHECK FUNCTIONS

This Appendix contains the GENIE language source code

written for the high level simulation check functions. These

check functions use the basic level check functions to

automatically accomplish a complete simulation test. Use of

the Genesil traceobj command also causes these check functions

to produce MASM test vector files.

func initall ( /* Function to intialize all input pins at time
-1. Note: all pins must have an initialization value
assigned for the simulation process to work
correctly. Also, note: prior to running this
function the time should be reset to time -1 by
using the command inittoggles. */

sn TESTIN 0 /* Set scanpath input to 0 */
sn LOAD 1 /* Enable test latches to move values from

combiner I to combiner 2 */
sn Ml 0 /* Set scanpath test latch operation for

shift in/out operation */
sn M2 0
sn SERIALIN 0 /* Set serial input pin to value of 0 */
sn REFCON 1 /* Allow reference values to be input */
sn OUTCON 1 /* Enable outputs to OUT PADS */
sn SPCON 0 /* Setup for parallel inputs*/
sn DATCON 1 /* Allow data values to be input */
sn MSKCON 1 /* Allow mask values to be input */
sn INPADS OXOOO /* Set all parallel input pins to 0 */
ck /* Cycle to bring time from -1 to 0 and input

OXOOO on the mask reference and data registers */
ck /* Cycle to propagate values from registers to the

data latches the testability latches */
samplein /* Initialize scanpath nodes by sample

operation*/
sn MSKCON 0 /* Disable mask value input */
sn REFCON 0 /* Disable reference value input */
sn DATCON 0 /* Disable data value input */
ck /* Cycle to pass results to output pins */

136



func testparallel in { /* Function to produce test vectors
which test the propering functioning of all portions
of the chip except the testability latches but which
emphasize the parallel load operations of the data,
mask, and reference registers */

inittoggles
untog /* Untoggle default clock toggle definitions *1
tog /* Toggle clock toggle definitions */
traceobj vecspara / /* Initiate traceobj command to put

test results in a file named vecspara */
initall /* Initialize chip */

/* initialize mask and reference registers to OXFFFF */
MSP OXFFFF
RSP OXFFFF

/* Load various input values in a parallel manner into
the data register to check the chip's operation. The
inputs cause DATAOUT values to range from 00 to 10. */
DSP OXOOO /* DATAOUT = 00 */
DSP OX0001 /* DATAOUT = 01 */
DSP 0X0012 /* DATAOUT = 02 */
DSP 0X0122 /* DATAOUT = 03 */
DSP 0X0123 /* DATAOUT = 04 */
DSP 0X1234 /* DATAOUT = 05 */
DSP 0X2345 /* DATAOUT = 06 */
DSP 0X3456 /* DATAOUT = 07 */
DSP 0X4567 /* DATAOUT = 08 */
DSP 0X5678 /* DATAOUT = 08 */
DSP 0X6789 /* DATAOUT = 08 */
DSP 0X789A /* DATAOUT = 08 */
DSP OX89AB /* DATAOUT = 07 */
DSP OX9ABC /* DATAOUT = 08 */
DSP OXABCD /* DATAOUT = 09 */
DSP OXBCDE /* DATAOUT =A */
DSP OXCDEE /* DATAOUT = OB */
DSP OXCDEF /* DATAOUT = OC */
DSP OXDEEF /* DATAOUT =D */
DSP OXEEFF /* DATAOUT = OE */
DSP OXEFFF /* DATAOUT = OF */
DSP OXFFFF /* DATAOUT =0 */

/* Load various input values in a parallel manner into
the reference register to check the chip's operation.
The inputs cause DATAOUT values to range from 00 to 10.

RSP OXOOOO /* DATAOUT = 00 */
RSP OX0001 /* DATAOUT = 01 */
RSP 0X0012 /* DATAOUT = 02 */
RSP 0X0122 /* DATAOUT = 03 */
RSP 0X0123 /* DATAOUT = 04 */
RSP 0X1234 /* DATAOUT = 05 *7

137



RSP 0X2345 /* DATAOUT = 06 */
RSP 0X3456 /* DATAOUT = 07 */
RSP 0X4567 /* DATAOUT = 08 */
RSP 0X5678 /* DATAOUT = 08 */
RSP 0X6789 /* DATAOUT = 08 */
RSP 0X789A /* DATAOUT = 08 */
RSP OX89AB /* DATAOUT = 07 */
RSP OX9ABC /* DATAOUT = 08 */
RSP GXABCD /* DATAOUT = 09 */
RSP OXBCDE /* DATAOUT = OA */
RSP OXCDEE /* DATAOUT = GB */
RSP OXCDEF /* DATAOUT = OC */
RSP OXDEEF /* DATAOUT = GD */
RSP OXEEFF /* DATAOUT = GE */
RSP OXEFFF /* DATAOUT = OF */
RSP 0XFFFF /* DATAOUT = 10 */

/* Load various input values in a parallel manner into
the mask register to check the chip's operation. The
inputs cause DATAOUT values to range from 00 to 10. */
MSP OXO0O0 /* DATAOUT = 00 */
MSP OX0001 /* DATAOUT = 01 */
MSP 0X0012 /* DATAOUT = 02 */
MSP 0X0122 /* DATAOUT = 03 */
MSP 0X0123 /* DATAOUT = 04 */
MSP 0X1234 /* DATAOUT = 05 */
MSP 0X2345 /* DATAOUT = 06 */
MSP 0X3456 /* DATAOUT = 07 */
MSP 0X4567 /* DATAOUT = 08 */
MSP 0X5678 /* DATAOUT = 08 */
MSP 0X6789 /* DATAOUT = 08 */
MSP 0X789A /* DATAOUT = 08 */
MSP 0X89AB /* DATAOUT = 07 */
MSP OX9ABC /* DATAOUT = 08 */
MSP OXABCD /* DATAOUT = 09 */
MSP OXBCDE /* DATAOUT = GA */
MSP OXCDEE /* DATAOUT = GB */
MSP OXCDEF /* DATAOUT = OC */
MSP OXDEEF /* DATAOUT = GD */
MSP OXEEFF /* DATAOUT = GE */
MSP OXEFFF /* DATAOUT = OF */
MSP 0XFFFF /* DATAOUT = 10 */
untraceobj /* Close vecspara file */

func test serial in (/* Function to test the serial loading
capabilities of the chip. Values are loaded into the
data, reference and mask registers and into the
testability latches via use of the SS function. */

inittoggles
untog

138



tog
traceobj vecsserl / /* Open file for test vector

results*/
initall /* Initialize chip */

/* Initialize mask and reference registers and testability
latch scan path latches to all ones */

SS MT OXFFFF OXFFFF
SS RT OXFFFF OXFFFF

/* Load values in a serial mannert into data register to
check for proper chip operation. Also include some new inputs
to the scan path to change the values scanned out of the chip.
The comments indicate the expected output values after the
completion of each operation. The println commands serve
as an example of a method of checking the simulation results
as the check function progresses. */

SS DT OXOOOO OXOOOO /* DATAOUT = 00 SHIFTOUT STILL = 1*/
ck /* cycle to obtain expected output from scan path */
println "DT OXOOO 0X0000 done, 00 1 expected output,

current time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS DT 0X1000 OXOOO /* DATAOUT = 01 SHIFTOUT NOW = 0 */
ck
println "DT 0X1000 OXOOO done, 01 0 expected output,

current time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS DT 0X2100 OXFFFF /* DATAOUT = 02 SHIFTOUT STILL =0 */
ck
println "DT 0X2100 OXFFFF done, 02 0 expected output,

current time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS DT 0X2210 OXFFFF /* DATAOUT = 03 SHIFTOUT NOW = 1 */
ck
println "DT 0X2210 OXFFFF done, 03 1 expected output,

current time" (gettime)
println "actual values" (snb OUT PADS) (snb SHIFTOUT)
SS D 0X3210 /* DATAOUT = 04 */
ck
println "D 0X3210 done, 04 . expected output, current

time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D 0X4321 /* DATAOUT = 05 */
ck
println "D 0X4321 done, 05 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D 0X5432 /* DATAOUT = 06 */
ck
println "D 0X5432 done, 06 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)

139



SS D 0X6543 /* DATAOUT = 07 */
ck
println "D 0X6543 done, 07 1 expected output, current

time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D 0XA987 /* DATAOUT = 08 */
ck
println "D 0XA987 done, 08 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D OXBAA9 /* DATAOUT = 09 */
ck
println "D 0XBAA9 done, 09 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D 0XEDCA /* DATAOUT OA */
ck
println "D OXEDCA done, OA 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D OXEEDC /* DATAOUT = 0B */
ck
println "D OXEEDC done, 0B 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D OXFEDC /* DATAOUT = OC */
ck
println "D 0XFEDC done, OC 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D OXFEED /* DATAOUT = OD */
ck
println "D OXFEED done, OD 1 expected output, current

time" (gettime)
println "actual values" (snb OUTPADS) (snb SHIFTOUT)
SS D OXFFEE /* DATAOUT OE */
ck
println "D OXFFEE done, OE 1 expected output, current

time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D OXFFFE /* DATAOUT = OF */
ck
println "D OXFFFE done, OF 1 expected output, current

time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D OXFFFF /* DATAOUT = 10 */
ck
println "D OXFFFF done, 10 1 expected output, current

time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
untraceobj

140



func test-force { /* Function to check the serial load
and force operations of the testability latches and
to also check the adder and final output results for
cases where the final output ranges from 10 hex to
IC hex (ie output due to force operations involves
values which can not be obtained through the inputs
to the correlator).

/* Initialize time, and clock toggle definitions */
inittoggles
untog
tog
traceobj vecstfor / /* Start tracing of operations and

send output to file vecstfor.SMO */
initall /* Initialize chip */

/* cause output to be 10 hex */
MSP OXFFFF
RSP OXFFFF
DSP OXFFFF
samplein /* Cause shift latches in testability latches

to hold values which causes an output of 10hex */
TS 16 OXFDFF /* Cause output of 11 */
TS 16 OXFDFF /* Cause output of 12 */
TS 16 OXFFFF /* Cause output of 13 */
TS 16 OXFFFF /* Cause output of 14 */
TS 16 OXF5FF /* Cause output of 15 */
TS 16 OXF5FF /* Cause output of 16 */
TS 16 OXF9F3 /* Cause output of 17 */
TS 16 OXF9F3 /* Cause output of 18 */
TS 16 0XF40F /* Cause output of 19 */
TS 16 OXF40F /* Cause output of 1A */
TS 16 0X6123 /* Cause output of lB */
TS 16 0X6123 /* Cause output of 1C */
untraceobj /* Close vecstfor file */

func testscan_clock ( /* Function to test the ability of
the scan path clock (CLOCK2) to operate at a faster
speed than the global system clock (CLOCK2), and
also to test the ability to operate the scan path
with the global system clock off */

vars i /* variable for the loop */
inittoggles
untog

/* Provide toggle definitions for clocks */
toggle CLOCK2 0 '(0 5 10)
/* The following unwieldy looking toggle definition for
the CLOCK signal will cause it to operate at the same

141



speed as the CLOCK2 signal during the initialization
process, at half the speed as the CLOCK2 signal for
the first part of the test, and then cause the CLOCK
signal to remain at zero for the remainder of the test */
toggle CLOCK 0 '(0 5 10 15 20 25 30 35 40 50 60 70 80 90

100 110 120 130 140 150 160 170 180 190 200 210 220
230 240 250 260 270 280 290 300 310 320 330 340 350
360 370 380 390 400 410 420 430 440 45J 460 470
1000)

tag CLOCK2 step both

traceobj vecssclk /
initall

/* Put initial values into data, mask, and reference
registers to start the test. Note: each command must be
done twice since the function calls have clock cycles
based on CLOCK2 now, but you still need the same number
of clock cycles as normal to occur with the CLOCK signal
to load the values into the registers. */
MSP OXFFFF
MSP OXFFFF
RSP OXFFFF
RSP OXFFFF
DSP OXCCCC /* Loading this value into the data

register will cause a value of 2448 2448 (hex) to be
loaded into the scan path when a swap operation is
done. The sequence of ones and zeros coming out of
the scan path can then be checked against these
values to verify proper operation of the chip */

DSP OXCCCC

swap_in RS /* swap 2448 2448 into the scan path */
for(i=l; @i<33; ++i) ( /* scan out the value 2448 2448

with the CLOCK signal operating */
ck /* cycle the CLOCK2 signal */
I

sn LOAD 1
ck 2 /* reload data latch of testability latches */
swap_in RS /* reload the scan path with the same

values as above */
for(i=l; @i<33; ++i) { /* scan values out with system

clock off to validate the ability to operate the DFT
scan path feature with no system clock functioning
as might be done for in-site testing */
ck
)

untraceobj
1

142



APPENDIX C. TIMING ANALYSIS REPORTS

This Appendix provides the timing analysis reports

generated for the global system and local scan path clock

signals in the DFTCHIP design. A Clock, Setup and Hold and

Violations report was generated for each of these two clock

signals. This information was used to verify that the

DFTCHIP design did not have any timing relationship conflicts

and also to determine an anticipated maximum operating speed

for both the global system and local scan path clock signals.

******************************* *****************************

Genesil Version v7.1 -- Thu Jun 7 15:55:45 1990
Chip: -genpooler/pooler/DFT CHIP

Timing Analyzer

CLOCK REPORT MODE

Fabline: VTI CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK

Included setup files:
#0 CLOCKdefaults (CLOCK 5V 75 degree Cent results)

CLOCK TIMES (minimum)
Phase 1 High: 113.0 ns Phase 2 High: 40.0 ns

Cycle (from Phl): 36.2 ns Cycle (from Ph2): 146.9 ns

Minimum Cycle Time: 152.9 ns Symmetric Cycle Time: 225.9 ns

CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 113.0 ns set by:

** Clock delay: 7.2ns (120.1-113.0)
Node Cumulative Delay Transition
dataout[4]/(internal) 120.1 rise
dataout[4]/DOUT 113.2 fall
output/cout[4] 113.1 fall
output/cout[4]' 109.9 fall

143



output/out[4] 106.7 fall
adder/out[4] 106.7 fall
adder/out[4]' 106.5 fall
adder/c3 87.4 fall
adder/c3' 87.3 fall
adder/c2out[0] 63.5 fall
combiner2/c2out[0]' 63.5 fall
combiner2/c2out[O] 61.0 fall
combiner2/x13 57.1 fall
tlatch32/x13 57.1 lall
tlatch32/x13' 56.3 fall
tlatch32/t13 46.7 fall
combinerl/t13 46.7 fall
combinerl/t13' 44.9 fall
combinerl/tlO 39.4 rise
combinerl/tl0' 37.3 rise
combinerl/xout[7] 30.0 fall
xnorreg/xout[7] 30.0 fall
xnorreg/xout[7]' 28.5 fall
xnorreg/x[7] 25.3 fall
xnorreg/rfout[7] 21.0 fall
ref in/refl/rfout[7 21.0 fall
ref in/refl/rfout[7 19.1 fall
ref in/refl/phase_a 10.2 rise
clock/phase a 10.1 rise
CLOCK 0.0 rise

Minimum Phase 2 high time is 40.0 ns set by:
** Clock delay: 6.1ns (46.0-40.0)
Node Cumulative Delay Transition
maskin/maskl/(internal) 46.0 rise
maskin/maskl/mout[0] 41.1 fall
mask_in/maskl/mout[0]' 41.0 fall
mask_in/maskl/spcon 35.4 fall
spcon/spcon 35.1 fall
spcon/spcon' 15.3 fall
spcon/phase b 9.5 rise
clock/phase-b 9.4 rise
CLOCK 0.0 fall

Minimum cycle time (from Phl) is 36.2 ns set by:
** Clock delay: 2.5ns (38.7-36.2)
Node Cumulative Delay Transition
mask_in/maskl/(internal) 38.7 rise
mask_in/maskl/mout[7] 37.3 fall
mask_in/maskl/mout[7]' 37.3 fall
mask_in/maskl/spcon 31.7 fall
spcon/spcon 31.4 fall
spcon/sp con' 11.5 fall
*spcon/(internal) 7.3 rise
SPCON 0.0 fall

144



minimum cycle time (from Ph2) is 146.9 ns set by:
** Clock delay: l.lns (148.0-146.9)
Node Cumulative Delay Transition
dataout[4]/(internal) 148.0 rise
dataout[4]/DOUT 147.1 fall
output/cout[41 147.1 fall
output/cout[4]' 143.9 fall
output/out[4] 140.6 fall
adder/out[4j 140.6 fall
adder/out[4]' 140.5 fall
adder/c3 121.3 fall
adder/c3' 121.2 fall
adder/c2out[0] 97.5 fall
combiner2/c2out[0] 97.4 fall
combiner2/c2out[0J' 94.9 fall
combiner2/xl3 91.0 fall
tlatch32/xl3 91.0 fall
tlatch32/x131 90.2 fall
tlatch32/t13 80.7 fall
combinerl/t13 80.7 fall
combinerl/t13' 78.8 fall
combinerl/tlO 73.3 rise
combinerl/tlO' 71.2 rise
combinerl/xout[7] 63.9 fall
xnorreg/xout[7] 63.9 fall
xnorreg/xout[7]' 62.4 fall
xnorreg/x[7] 59.2 fall
xnorreg/rfout[7] 55.0 fall
ref_in/refl/rfout[7] 55.0 fall
ref_in/refl/rfoutf7]' 53.0 fall
*refin/refl/(internal) 46.9 fall
ref_in/refl/rout[7] 40.9 fall
ref in/refl/rout[7]' 40.9 fall
ref_in/refl/sp con 35.3 fall
spcon/ sp-con 35.1 fall
spcon/sp con' 15.3 fall
spcon/phase -b 9.5 rise
clock/phase-b 9.4 rise
C LOCK 0.0 fall

Genesil Version v7.1 -- Thu Jun 7 15:54:35 1990

Chip: -genpooler/pooler/DFT_-CHIP Timing Analyzer

SETUP AND HOLD MODE

Fabline: VTICN20A Corner: GUARANTEED
Junction Ternperature:75 deg C Voltage:5.O0v
External Clock: CLOCK

Included setup files:
#0 CLOCK-defaults (CLOCK 5V 75 degree Cent results)

145



INPUT SETUP AND HOLD TIMES (ns)
Input Setup Time Hold Time

Phl(f) Ph2(f) Phl(f) Ph2(f)
DATCON --- 22.8 --- 1.2 PATH
INPADS[0] --- 18.7 --- 1.1 PATH
INPADS[10] --- 17.4 --- 1.2 PATH
INPADS[11] --- 17.3 --- 1.2 PATH
INPADS[12] --- 17.8 1.2 PATH
INPADS[13] --- 18.0 --- 1.2 PATH
INPADS[14] --- 17.8 --- 1.2 PATH
INPADS[15] --- 17.6 --- 1.2 PATH
INPADS[1] --- 18.3 --- 1.1 PATH
INPADS[2] --- 18.1 --- 1.1 PATH
IN PADS[3] --- 17.7 --- 1.1 PATH
INPADS[4] --- 17.2 --- 1.2 PATH
INPADS[5] --- 17.0 --- 1.2 PATH
INPADS[6] --- 16.8 --- 1.2 PATH
IN PADS[7] --- 16.8 --- 1.2 PATH
INPADS[8] --- 17.9 --- 1.2 PATH
INPADS[9] --- 18.0 --- 1.2 PATH
LOAD --- 10.7 --- 1.2 PATH
M1 --- 3.9 --- 1.2 PATH
M2 --- 3.9 --- 1.2 PATH
MSKCON --- 23.6 --- 1.2 PATH
OUTCON --- 3.9 --- 1.2 PATH
REFCON --- 22.5 --- 1.2 PATH
SERIALIN --- 16.5 --- 1.2 PATH
SPCON --- 36.2 --- 1.2 PATH
TESTIN ............- PATH

Genesil Version v7.1 -- Thu Jun 7 15:56:35 1990
Chip: ~genpooler/pooler/DFTCHIP

Timing Analyzer

VIOLATION MODE

Fabline: VTI CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK

Included setup files:
#0 CLOCKdefaults (CLOCK 5V 75 degree Cent results)

NO VIOLATIONS
Hold time check margin: 4.Ons

146



Genesil Version v7.1 -- Thu Jun 7 17:31:18 1990
Chip: "genpooler/pooler/DFTCHIP

Timing Analyzer

CLOCK REPORT MODE

Fabline: VTI CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK2
Included setup files:
#0 CLOCK2_defaults (CLOCK2 5V 75 degree Cent results)

CLOCK TIMES (minimum)

Phase 1 High: 17.5 ns Phase 2 High: 6.6 ns

Cycle (from Phl): 25.8 ns Cycle (from Ph2): 24.7 ns

Minimum Cycle Time: 25.8 ns Symmetric Cycle Time: 35.0 ns

CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 17.5 ns set by:

** Clock delay: 9.2ns (26.7-17.5)
Node Cumulative Delay Transition
tlatch32/(internal) 26.7 fall
tlatch32/x12 24.2 fall
tlatch32/x12' 23.4 fall
tlatch32/phase_ta 8.7 rise
clock2/phaseta 8.7 rise
CLOCK2 0.0 rise

Minimum Phase 2 high time is 6.6 ns set by:
** Clock delay: 8.7ns (15.4-6.6)
Node Cumulative Delay Transition
tlatch32/(internal) 15.4 fall
tlatch32/phase_tb 7.7 rise
clock2/phase tb 7.7 rise
CLOCK2 0.0 fall

Minimum cycle time (from Phl) is 25.8 ns set by:
** Clock delay: 8.7ns (34.5-25.8)
Node Cumulative Delay Transition
tout/(internal) 34.5 fall
tout/testout 34.1 rise
tlatch32/testou 34.0 rise
tlatch32/testou 32.6 rise
*tlatch32/(intenal) 27.6 fall
tlatch32/x14 22.0 rise
tlatch32/x14' 21.8 rise
tlatch32/phase_ta 8.7 rise
clock2/phaseta 8.7 rise
CLOCK2 0.0 rise

147



Minimum cycle time (from Ph2) is 24.7 ns set by:
** Clock delay: 6.7ns (31.4-24.7)
Node Cumulative Delay Transition
tlatch32/xl4 31.4 fall
tlatch32/x14' 31.3 fall
*tlatch32/(internal) 23.0 rise
tlatch32/testout 21.7 fall
tlatch32/testout' 20.3 fall
tlatch32/phase_tb 7.7 rise
clock2/phase-tb 7.7 rise
CLOCK2 0.0 fall

Genesil Version v7.1 -- Thu Jun 7 17:30:24 1990
Chip: -genpooler/pooler/DFTCHIP

Timing Analyzer

SETUP AND HOLD MODE

Fabline: VTICN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK2

Included setup files:
#0 CLOCK2_defaults (CLOCK2 5V 75 degree Cent results)

INPUT SETUP AND HOLD TIMES (ns)
Input Setup Time Hold Time

Phl(f) Ph2(f) Phl(f) Ph2(f)
DATCON --- --- --- --- PATH
INPADS[0] --- --- --- --- PATH
INPADS[10] --- --- --- --- PATH
INPADS[llI --- --- --- --- PATH
INPADS[121 --- --- --- --- PATH
INPADS[13] --- --- --- --- PATH
INPADS[141 --- --- --- --- PATH
INPADS[15] ---- --- --- PATH
INPADS[1] --- --- --- --- PATH
INPADS[2] --- --- --- --- PATH
INPADS[3] --- --- --- --- PATH
INPADS[41 --- --- --- --- PATH
INPADS[5] --- --- --- --- PATH
INPADS[6] --- --- --- --- PATH
INPADS[7] --- --- --- --- PATH
INPADS[81 --- --- --- --- PATH
INPADS(9] --- --- --- --- PATH
LOAD --- --- --- --- PATH
Ml --- --- --- --- PATH

M2 --- --- --- --- PATH
MSKCON --- --- --- --- PATH

OUTCON --- --- --- --- PATH
REFCON --- --- --- --- PATH

148



SERIALIN --- PATH
SPCON ............- PATH
TESTIN --- 5.0 --- 0.1 PATH

Genesil Version v7.1 -- Thu Jun 7 17:32:26 1990
Chip: -genpooler/pooler/DFTCHIP

Timing Analyzer

VIOLATION MODE

Fabline: VTI CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK2
Included setup files:
#0 CLOCK2_defaults (CLOCK2 5V 75 degree Cent results)

NO VIOLATIONS
Hold time check margin: 4.Ons

149



APPENDIX D. TEST VECTOR CONVERSION PROGRAM

This Appendix provides the C source code for the

conversion program used to translate Genesil MASM formatted

test vector files to the ".das" and ".sim" file formats used

by the DVS50 software. The conversion program also

interactively produces a ".src" file for use with the DVS50

software if the conversion program user indicates that this

needs to be done.

/************************************************************
convert.c - conversion program to take the Genesil ATG or

SIMULATOR produced MASM test vector results from
.SMO file format and translate it to the .DAS
and .SIM formats used by the DVS50 software
during testing on the DAS 9100 tester.
Additionally, a .SRC file for use by the DVS50
software is produced interactively if desired
by the conversion program user.

**** *******************************************************

#include <stdio.h>
#include <string.h>

#include <malloc.h>
#include <stdlib.h>
#define MAXLEN 50 /* max length of signal names or test

vectors allowed */
#define MALLOC(x) ((x *) malloc(sizeof(x)))
#define ISWHITE(x) (x==' ') 11 (x=='\n') 11 (x=='\t')

(x==' \r')

FILE *fpl,*fp2,*fp3; /* file pointers */
char buffer[MAXLEN+1]; /* spot to store word/testvestors

strings */
char spaces[MAXLEN+l]; /* holds spaces */
int count; /* loop counter */

main(argc,argv)
int argc;
char **argv;

150



{
char temp(MAXLEN + 1]; /* used during string manipulations

where more than one copy of the
buffer information is needed */

char src filename[MAXLEN + 1]; /* holds prefix for
filename of .src file */

int undetcount = 0; /* used to keep track of number of
testvectors which have undetermined
output values during the initialization
process for the chip */

int undetline = 0; /* line number of last line with
undetermined outputs*/

int vec count = 0; /* total number of testvector lines */
int pin countdas = 0; /* counts number of input pins on

chip for das file */
int pin countsim = 0; /* counts number of total pins on

chip for sim file */
long int dascount,sim count; /* pointers to location where

pin counts are going to be
placed in the das and sim
files*/

int loops /* keeps track of number of multiple signals
written during calls to the print_tofile
function */

if (argc == 1) /* case of no arguements given for
execution*/

{
printinstructions(; /* print instructions and then

exit program */
exit(0);
)

else if (argc == 2) /* only a testvector file given as an
arguement */

if ((fpl=fopen(argv[l],"r")) == NULL)
printf("Testvector file not found!");

strcat((strncpy(buffer,argv[l],
strcspn(argv[l],"."))),'\0');

/* obtain the prefix charcters for argv[l] and put
in buffer */

strcpy(srcfilename,buffer); /* copy filename prefix*/
fp2=fopen(strcat(strcpy(temp,buffer),".das"),"w");

/* open a file whose name is (argv[l] prefix).das */
fp3=fopen(strcat(strcpy(temp,buffer),".sim"),"w+");

/* open a file whose name is (argv[l] prefix).sim */
fprintf(fp2,"%s\nl\nl\n",buffer); /* print das file

prefix and two l's on seperate lines in newly opened
file */

fprintf(fp3,"%s\nl\nl\n",buffer); /* print sim file
prefix and two l's on seperate lines in newly opened
file */

151



else if (argc == 3 ) /* both testvector file and output
filename given as arguements for program
execution */

(
if ((fpl=fopen(argv[l],"r")) == NULL)

printf("Testvector file not found!");
strcpy(buffer,argv[2]); /*set buffer=filename prefix

for .DAS output file*/
strcpy(src filename,buffer); /* copy filename prefix*/
fp2=fopen(strcat(buffer,".das") ,"w"); /* open a file

whose name is argv[2j.das */
strcpy(buffer,argv[2]); /*set buffer=filename prefix

for .SIM output file*/
fp3=fopen(strcat(buffer,".sim") ,"w+"); /* open a file

whose name is argv[2].sim */
fprintf(fp2,"%s\nl\nl\n",argv[2]); /* print das file

prefix and two l's on seperate lines in newly opened
file */

fprintf(fp3,"%s\nl\nl\n",argv[2]); /* print sim file
prefix and two l's on seperate lines in newly opened
file */

)
for (count=O; count < MAXLEN; count++)

strcat(spaces," "); /* fill spaces string with all
spaces */

dascount = ftell(fp2); /* get pointer to location of das
file pin count */

fprintf(fp2,"000\n"); /* temp value for number of input
pins for das file */

simcount = ftell(fp3); /* get pointer to location of sim
file pin count */

fprintf(fp3,"000\n"); /* temp velue for number of total
pins for sim file */

while (strcmp(buffer,"INPUTS") != 0) /* loop until after
the keyword INPUTS is encountered in the testvector
file as you move through the test vector file header
informaticn */

{
getwords(fpl);
I

getwords(fpl); /* get first input signal name */
while (strcmp(buffer,"OUTPUTS") != 0)

{
loops = 0; /* initialize loop counter for this word */
pincountdas++; /* increment counter for pins in das

file */
if (strstr(buffer,";") == NULL) /* case of all input

signal names except the last one */

loops = print to-file(fp2,1,loops) ; /*print signal
name to file */

152



pincountdas += loops; /* correct input pin
count as needed */

print to file(fp3,1); /* print signal name to
file */

)
else /* case where last character in buffer string =

"1;"1 which indicates the end of the inputs in the
test vector file */

(
buffer[strcspn(buffer,'; )-I] = 1\0'; /* shorten

word in buffer so as not to include the ";" */
loops = printtofile(fp2,1);
pin countdas += loops; /* correct input pin

count as needed */
print to file(fp3,1);
)

getwords(fpl);
)

getwords(fpl); /* get the first output signal name */
pin_count sim = pincountdas; /* sim file has same

number of input signals as the das file does */
while (strcmp(buffer,"CODING") != 0)

{
loops = 0;
pin_countsim++; /* increment total pin count for sim

file */
if (strstr(buffer,";") == NULL) /* case of all input

signal names except the last one */
(
loops = print to file(fp3,1); /* print signal name

to file */
pincountsim += loops;
)

else /* case where last character in buffer string
";" which indicates the end of the outputs in
the test vector file */

buffer[strcspn(buffer,';')-l] = '\0'; /* shorten
word in buffer so as not to include the ";" */

loops = print to file(fp3,1);
pincountsim += loops;

getwords(fpl);

getwords(fdpl)
while (buffer[O] 1=\0)

if (strstr(buffer,"<") != NULL) /* beginning of
input test vectors*/

vec count++; /* increment count of number of test
vectors */

153



strcpy(buffer,&buffer[l]); /* remove leading
of < o */

print -to -file(fp2,l); /* write values to file*/
print to file(fp3,2); /* write values to file*/

if (strstr(buffer,1">") != NULL) /*beginning of
output testvectors*/

strcpy(buffer,&buffer~l]); /* remove leading
11>11 */

buffer[strcspn(buffer, ';')-l] '\01; /* shorten
word in so as not to include the 1;11 */

print to file(fp3,l); /* write values to file*/
if (strstfr(buffer,"1.") != NULL)

undet count++; /* increment count for
undetermined output test vector cases *

undet line=vec count; /* keep track of last
test vector line that has undetermined
outputs in it *

getwords(fpl);

f seek (fp2, dascount,0); /* go to input pin count location of
das file */

fprintf (fp2,"I%-3d"I,pin-count das) ; 1* print input pin count
to das file */

fseek (fp3, simcount,0); /* go to total pin count location of
sim file */

fprintf (fp3,"I%-3d"I,pin-count-sim) ; /*print total pin count
to sim file*/

printf("\nThere are %d vectors which have undefined outputs
"1,undet_count);

printf("lcaused by the\ninitialization process.
The last testvector with an "1);

printf("lundefined output\npresent was number %d.
The total "1, undet_line);

printf ("number of testvectors converted is %d. \nII, vec_count);
create_src(fp3,src filename,pin count_sim); /* create .src

file if desired*/

create_src() - function to create an .src file upon a
rositive response to a query as to the
desire to do so.

create_src(fpointer , filcname,pins)

154



FILE *fpointerl; /* pointer to the file being read from */
int pins; /* number of pins present on the chip */
char filename[MAXLEN + 1]; /* filename prefix for .src

file */
{
FILE *fpointer2; /* pointer to file to write to */
int pinnum; /* number of specific pin being referred to */
char att; /* character representing attributes of the pin */
int namelen; /* length of the pin name */
int pwrspnum; /* reference number for the power supply */
int pwrspcount; /* counter for the number of different power

supplies used */
int pwrspvoltage; /* voltage of a particular power supply

in mV */
int pwrspcurrent; /* current sourced by a particular power

supply in mA */
int clockrate; /* clock rate for the application of test

signals */

printf("\n\nDo you want to create an .src file (Y/N)? ");
att=getche();
if (att=='N' II att=='n') /* case where .src file is not

desired */
{
printf("\n\nProgram Execution Completed:

das and .sim files created.\n");
exit( 0);

/*if .src file is desired then get the needed information
about each pin*/
fpointer2=fopen(strcat(filename,".src") ,"w+"); /* open a

file whose name is (argv[l] prefix).src */
printf("\n\nFor each signal input the pin number and the

letter P,A, or B");
printf("\nindicating PAT, ACQ or BOTH for the pin

attribute.");
flushall();
rewind(fpointerl); /* reset file to its beginning so it can

be read from */
getwords(fpointerl); /* get name of chip from file */
fprintf(fpointer2,"PROGRAM %s;\nPINDEF;\n",buffer);

/* write initial info */
for (count=l; count<4; count++) /* skip unneeded info in

read file */
getwords(fpointerl);

for (count=l; count<pins+l; count++) /* for each pin get
info and write it to the new file*/

getwords(fpointerl);
printf("\n\nInput the pin number and attribute for the");
printf(" %s signal: ",buffer);

155



scanf("%d %c",&pinnum, &att);
name -len=strlen(buffer);
strncat(buffer,spaces, (15-name-len));
if (att=='P')

fprintf(fpointer2,"%s : %2d,
PAT;\n",buffer,pinnum);

else if (att=='Al)
fprintf(fpointer2,"%s :%2d,

ACQ;\n",buffer,pinnum);
else if (att=='B')

fprintf(fpointer2,"%s :%2d,
PAT, ACQ;\n",buffer,pinnum);

printf("\n\nFor each power supply pin enter the pin name,
pin number and the");

printf ("\npower supply number the pin should be connected to.
When there");

printf("\nare no more power supply pins to enter information
for type 2");

printf("\nfollowed by an enter.");
pwrspcount=0;
while (1) /* get info about power supply pins *

printf("\n\nEnter the pin name, pin number and power
supply number:\n");

scanf("%s",&buffer);
if (strcmp(&buffer[0],"z")==0

strcmp(&buffer[0] ,")=O
break;

scanf("%d %d",&pin num, &pwrspnum);
if (pwrsp -count < pwrspnum)

pwrsp -count=pwrspnum;
name -len=strlen(buffer);
strncat(buffer,spaces, (15-name -len));
fprintf(fpointer2,"%s :%2d,

PS %d;\n",buffer,pinnum,pwrspnum);

fprintf(fpointer2,"END;\nTIMEDEF;\n");

/* get clock rate info to be used in testing *
printf("\n\nEnter the Pattern Generator clock rate in ns

(from 40 to 5000):";
scanf("%d",&clock_rate);
fprintf(fpointer2,"PAT :ns

%d;\nEND;\nTHRESHOLD;\n" ,clock-rate);

/* get threshold level for chip pins *
printf("\n\nEnter the acquisition threshold level,

TTL or ECL: M)
scanf("%s",&buffer);
fprintf(fpointer2,"ACQ :%s;\nEND;\nPSDEF;\n",buffer);

156



/* input power supply characteristics */
printf("\n\nFor each power supply enter the desired voltage in

mY and if the");
printf("\nvoltage is not 0 (ground) enter the amount of

current which needs");
printf("\nto be sourced from the power supply in mA

(3000 max).");
for (count=l; count<pwrspcount+l; count++)

{
printf("\n\nFor power supply %d enter the needed voltage

(mY): ",count);
scanf( "%d",&pwrsp_voltage);
if (pwrsp voltage != 0)

{
printf("\nEnter the max current to be sourced

(mA): ");
scanf( "%d",&pwrspcurrent);
fprintf(fpointer2,"%d : mV %d, mA

%d;\n",count,pwrspvoltage,pwrspcurrent);
I

else
fprintf(fpointer2,"%d mV 0;\n",count);

)
fprintf(fpointer2, "END;\nBEGIN;\nEND$\n");

printf("\n\nProgram Execution Completed:
.das, .sim, and .src ");

printf("files created.\n");
)

printto-file() - function to print to the designated file
in one of two modes. Mode 1 prints the
contents of the buffer followed by a \n
(LF/CR). Mode 2 prints only the contents
of the buffer with no \n included.

**** ** ***** ****************************

printto file(filepointer,mode)

FILE *filepointer;
int mode; /* indicates mode for output to file (1 = with

\n, 2 = no \n) */

int i;
char temp[MAXLEN + 1];
int loop_count; /* keeps track of number of iterations

through loop */

157



if (mode == 1) /* print string followed by \n mode */
I
loop-count = 0;
if (strstr(buffer,"[") == NULL) /*input or output

signal names which do not have multiple signals */
{
if (strcmp(buffer,"CLOCK")==0)

strcat(buffer,"_SYS"); /* identify system
clock more clearly*/

fprintf(filepointer,"%s\n",buffer); /* print string
to file */

)
else /*case where input/output signal names do have

multiple signals */
I
loop-count--; /* correct loops counter to start at

strcpy(temp,buffer); /* make copy of signal name */
tempfstrcspn(ternp,"[")] = '\0'; /* remove

signal name numbers*/
for (i=atoi(&buffer[strcspn(buffer,"[")+l]);

i > (atoi(&buffer[strcspn(buffer,":")+ll)-l) ; i--)
(
loopcount++; /* keep track of total signals

printed via counting number of
iterations of for loop */

fprintf(filepointer,"%s%d\n",temp,i);
/* for each number for a given signal name
print to the file in the format like
SIGNALNAMENUMBER */

I
4

return(loop count);
I

if (mode == 2)
fprintf(filepointer,"%s",buffer);

)

/************************************************************
getwords() - function for getting words from the input file

to store as appropriate in the output files.
Note: words can consist of any printable
character except a comma (since commas are used
without spaces in the testvector files produced
by ATG to seperate the input/output names).

getwords(filepointer)
FILE *filepointer;
(
int buflength,c;

158



buflength=O;
strcpy(buffer,spaces); /* fill buffer with spaces */
while (1) /* loop until break occurs */

{
c=getc(filepointer); /* get next character in file

as integer value */
if (c==EOF) /* reached end of file case */

(
buffer[O]='\0'; /*put null terminator in first spot

of buffer to serve as a flag that
EOF encountered */

break;

if ((' '<c) && (c<0175) && (c .'= ','))
(
buffer[buflength++] = c; /* if printable character

except a comma place it
in the buffer */

if ((buffer[O] ' ') && ((ISWHITE(c)) 1 (c==',')))
(

buffer[buflength] = '\0'; /* if whitespace
character reached place null terminator at
end of buffer string */

if (strstr(buffer,"(") != NULL) /* return only
that portion of the word that does not
contain any parenthesis */

buffer[strcspn(buffer,"(")] = '\0';
break;
)

print instructions() - function to print usage instructions
if the program is executed without
any arguements****************************** **** ******************** ***** **

print instructions()
{
printf("\nCONVERSION PROGRAM TO GO FROM GENESIL .SMO TO TESTER

.DAS AND .SIM");
printf("\n FORMATS AND TO PRODUCE A .SRC FILE IF IT IS

DESIRED");
printf("\n\nTo use this program call it with the name of the

Genesil test");
printf("\nvector SMO file as a first arguement. If a second

arguement is");
printf("\nincluded during the call to the program then the DAS

and SIM file");

159



printf("\nresults will be stored under the name
<second arguement>.DAS and");

printf("\n<second arguement>.SIM. If no second arguement is
included then");

printf("\nthe results will be stored under the same prefix
name as the SMO");

printf("\ntest vector file. The .SRC file is produced only if
desired.\n\n");

1

160



LIST OF REFERENCES

1. Frank F. Tsui, LSI/VLSI Testability Design, McGraw-Hill
Book Company, 1987.

2. Thomas W. Williams and Kenneth P. Parker, "Design for
testability - a survey," Proc. IEEE, vol. 71, pp. 98-112,
January 1983.

3. John Stressing, "Fault simulation and test gereration - an
overview," Computer-Aided Engineering Journal, vol. 6, no.
3, pp. 92-98, June 1989.

4. Jacob A. Williams, "Fault modeling in VLSI," in VLSI
Testing, T. W. Williams ed., pp. 1-27, Elsevier Science
Publishers B. V., 1986.

5. Tulin Erdim Mangir, "Sources of failures and yield
improvement for VLSI and restructable interconnects for
RVLSI and WSI: Part I - Sources of failures and yield
improvements for VLSI," Proc. IEEE, vol. 72, pp. 690-708,
June 1984.

6. Richard Goering, "Fault simulation strives for designer
acceptance," Computer Design, vol. 26, no. 1, pp. 37-44,
1 January 1987.

7. John Carl Davidson, "Implementation of a design for
testability strategy using the Genesil Silicon Compiler,"
Master's Thesis, Naval Postgraduate School, Monterey,
California, 1989.

8. T. W. Williams, "Design for testability," in VLSI Testing,
T. W. Williams ed., pp. 95-160, Elsevier Science Publish-
ers B. V., 1986.

9. Richard Goering, "CAE and ATE vendors tighten link between
design and test," Computer Design, vol. 24, no. 6, pp. 54-
65, 1 October 1985.

10. Genesil System, Volume II, Parallel Data Module, Silicon
Compiler Systems Corporation, San Jose, California,
September 1988.

11. Dave Johannsen and Dennis G. Sabo, "Genesil silicon
compilation and design for testability," 3rd International
IEEE VLSI Multilevel Interconnection Conference, pp. 372-
380, 1986.

161



12. Genesil System, Volume III, Parallel Data Module, Silicon
Compiler Systems Corporation, San Jose, California,
September 1988.

13. Robert Howard Settle, "Design methodology using the
Genesil Silicon compiler," Master's Thesis, Naval Post-
graduate School, Monterey, California, 1988.

14. Genesil System Release Notes, Silicon Compiler Systems
Corporation, San Jose, California, February 1988.

15. Genesil System Description Users Manual, Silicon Compiler
Systems Corporation, San Jose, California, September 1987.

16. Genesil System, Compiler Library, Volume I, Blocks,
Silicon Compiler Systems Corporation, San Jose, Califor-
nia, February 1988.

17. Genesil System, Simulation Users Guide, Silicon Compiler
Systems Corporation, San Jose, California, September 1987.

18. Genesil System, Timing Analysis Users Guide, Silicon
Compiler Systems Corporation, San Jose, California,
February 1988.

19. Genesil System, Automatic Test Generation Users Guide,
Silicon Compiler Systems Corporation, San Jose, Califor-
nia, April 1989.

20. MOSIS Users Manual, Release 3.0, Information Science
Institute, University of Southern California, Marina del
Rey, California, 1988.

21. DAS 9100 Series Operator's Manual with Options, Volume I,
Manual #070-3624-01, Tektronix, Inc., Beaverton, Oregon,
August 1986.

22. DAS 9100 Series Operator's Manual with Options, Volume II,
Manual #070-5396-00, Tektronix, Inc., Beaverton, Oregon,
October 1986.

23. Walter F. Corliss II, "An engineering methodology for
implementing and testing VLSI circuits," Master's Thesis,
Naval Postgraduate School, Monterey, California, 1989.

24. 91DVS Device Verification Software User's Manual, Manual
#070-6072-00, Tektronix, Inc., Beaverton, Oregon, Septem-
ber 1986.

162



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U. S. Marine Corps
Washington, D.C. 20380-0001

4. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. Herschel H. Loomis, Code EC/LM 5
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Dr. Chyan Yang, Code EC/YA 3
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

7. Captain Brian L. Pooler 1
Electrical Engineering Department
U. S. Naval Academy
Annapolis, Maryland 21402

163


